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Abstract

This paper studies semiparametric identification of substitution and com-

plementarity patterns between two goods using a panel multinomial choice

model with bundles. The model allows the two goods to be either substitutes

or complements and admits heterogeneous complementarity through observed

characteristics. I first provide testable implications for the complementarity

relationship between goods. I then characterize the sharp identified set for

the model parameters and provide sufficient conditions for point identification.

The identification analysis accommodates endogenous covariates through flex-

ible dependence structures between observed characteristics and fixed effects

while placing no distributional assumptions on unobserved preference shocks.

My method is shown to perform more robustly than the parametric method

through Monte Carlo simulations. As an extension, I allow for unobserved het-
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1 Introduction

Substitution/complementarity relationships between goods have been studied in var-

ious applications such as online news versus print newspapers, digital books versus

traditional books, and cigarettes versus e-cigarettes. The relationship plays a cru-

cial role in consumers’ decisions; therefore, understanding substitution patterns is

important for predicting demand for a good and analyzing the welfare effects of, for

example, a merger of two companies or the introduction of a new good (Petrin, 2002;

Goolsbee and Petrin, 2004; Gentzkow, 2007).

The standard multinomial choice models typically assume that consumers can

buy only one good at a time, which rules out complementarity by assumption. How-

ever, even some goods traditionally perceived as substitutes are shown to be comple-

ments in different contexts. For example, Zhao (2019) suggests that cigarettes and

e-cigarettes could be complements, and Grzybowski and Pereira (2008) demonstrate

the complementarity between telephone calls and messages.

With these motivations in mind, I propose a semiparametric panel multinomial

choice model with fixed effects to study substitution/complementarity patterns. This

model allows consumers to purchase two goods simultaneously, accommodating the

possibility that the two goods are either substitutes or complements. The model also

permits heterogeneous complementarity relationships through observed characteris-

tics.

Identifying substitution/complementarity patterns with bundles involves several

challenges. First, the demand for one good includes consumers who buy this good

alone and those who buy a bundle. Therefore, a large demand for one good could

come from consumers’ high utility for this good, or its complementarity with another

good, or both. We need to disentangle the two sources to identify the complemen-

tarity relationship. Second, the purchase of two goods together may be due to either

the goods’ complementarity or the unobserved correlation between consumers’ pref-

erences over the two goods. For example, consumers may buy a variety of organic

goods because of their preferences over organic goods instead of the complementarity

between these goods. Distinguishing the complementarity relationship and the corre-

lation between consumers’ tastes for goods could be challenging since they are both

unobserved and can affect consumers’ decisions simultaneously.

To tackle these challenges, my paper exploits a conditional stationarity assumption

2



about preference shocks over time, which enables us to use intertemporal variation

in conditional choice probabilities for identification. I first provide an approach to

test the substitution/complementarity relationship between goods and then derive

the sharp identified set for the model parameters.

The testing approach exploits the relationship between the demand for two goods

with the covariate indices of those goods under a substitution or complementarity

relationship between goods. This approach does not require the estimation of any

model parameter. Instead, it constructs conditional moment inequalities that only

depend on observed variables. Therefore, testing complementarity can be conducted

by directly testing these moment inequalities.

To derive the sharp identified set, the paper uses intertemporal comparisons of

conditional choice probabilities to obtain identifying restrictions on the model param-

eters. The result not only identifies the sign of the complementarity but also bound

its value. The sharpness of the identification results is established, indicating that all

available information from the data for the model parameters has been exhausted.

Additionally, the paper shows that under large support conditions for the covariates

and a linear specification of the complementarity, point identification can be achieved.

For estimation and inference, I characterize conditional moment inequalities based

on the identification results and apply the approach in Shi, Shum, and Song (2018).

In Monte Carlo simulations, I compare the finite sample performance of the method in

this paper to that of a parametric method, which assumes a parametric distribution

over the error terms and a linear model for fixed effects. The simulation results

show that the semiparametric method in this paper has the advantage of performing

robustly over different DGP designs, whereas the parametric estimator is vulnerable

to misspecifications.

I explore several extensions to the model. Firstly, I consider the possibility of

unobserved heterogeneity in the complementarity relationship, which allows for dif-

ferences in complementarity across individuals that are not captured by covariates.

By exploiting variation in demand for two goods, I characterize partial identification

results for the fraction of people for whom the two goods are complements. In the

Appendix, I also extend the model to include more than two goods and establish

partial identification results for model parameters under additional assumptions. Ad-

ditionally, I extend my approach to incorporate nonseparable utility functions as well

as cross-sectional models.
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1.1 Related Literature

This paper contributes to the literature studying substitution/complementarity pat-

terns in a discrete choice model with bundles. Gentzkow (2007) develops a discrete

choice model that allows for complementarity to study the substitution relationship

between online news and print newspapers. His paper is flexible about substitution

patterns and also admits correlations between error terms across choices. Compared

to Gentzkow (2007), my paper does not reply on parametric assumptions, and also

allows for flexible dependence structures between covariates and fixed effects. Dunker,

Hoderlein, and Kaido (2015) and Iaria and Wang (2020) allow for endogeneity and

provide identification results of models with bundles by extending the classic BLP ap-

proach in Berry, Levinsohn, and Pakes (1995). Their methods use demand inversion

and parametric distributions over error terms, and they address endogeneity using

instrumental variables. Monardo (2021) studies a more flexible model for the inverse

demand and uses an instrument to construct moment conditions. My paper mainly

exploits intertemporal variation in panel data to derive sharp identification results

and the method does not require demand inversion or instrumental variables.

There are several papers that allow for unknown distributions of error terms to

study substitution patterns. Fox and Lazzati (2017) study semiparametric identi-

fication of a discrete choice model with bundles under a large support assumption

and exogenous covariates. Allen and Rehbeck (2022) allow for unobserved hetero-

geneity in the complementarity and provide partial identification for the fraction of

people for whom the two goods are complements. My paper focuses on heterogeneous

complementarity through observed covariates and provide sharp identification with

bounded support of covariates. In an extension of this paper, I allow for unobserved

heterogeneous complementarity while relaxing the exogenous covariates assumption

and the exclusion restriction in Allen and Rehbeck (2022).

My paper is also related to a large body of literature on panel multinomial choice

models with fixed effects. Chamberlain (1980) provides a conditional fixed effect

logit estimator for the panel multinomial choice model under a logistic distribution

over disturbances. Manski (1987) as well as Honoré and Lewbel (2002) relax the

logistic distribution assumption and study semiparametric identification of a binary

choice model. Manski (1987) uses a maximum score approach that relies on a group

stationarity assumption, and Honoré and Lewbel (2002) exploit the idea of a special

regressor to identify the panel binary choice model. Honoré and Weidner (2020),
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Khan, Ponomareva, and Tamer (2023), and Dobronyi, Gu, and Kyoo (2021) study

identification of dynamic binary choice models.

Pakes and Porter (2022) and Shi, Shum, and Song (2018) study a panel multino-

mial choice model. Pakes and Porter (2022) derive sharp identification of the model

by characterizing conditional moment inequalities, while Shi, Shum, and Song (2018)

use cyclic monotonicity for identification and estimation. Khan, Ouyang, and Tamer

(2021) provide inference methods for multinomial choice models. Gao and Li (2020)

relax the separable utility function assumption in the previous papers and study a

class of nonseparable utility functions. The aforementioned papers focus on the iden-

tification of own price coefficients rather than substitution patterns between different

goods. My paper builds on this literature to allow for bundles in the panel multino-

mial choice model and characterizes sharp identification for substitution patterns.

The rest of this paper is organized as follows. Section 2 introduces the panel

multinomial choice model with bundles. Section 3 provides testable implications for

the complementarity between two goods. Section 4 characterizes the sharp identified

set for the model parameters and provides sufficient conditions for point identification.

Section 5 develops conditional moment inequalities for the identified set. Section 6

studies an extension. Section 7 examines the finite sample performance via Monte

Carlo simulations. Section 8 concludes.

2 Panel Multinomial Choice Model

This section presents a panel multinomial choice model allowing for bundles. Con-

sider a short-panel structure: let i ∈ I denote consumers and t ≤ T denote time

periods where the length of the panel T ≥ 2 is fixed. Since this paper focuses on

substitution patterns between two goods, I consider the case of two goods: {A,B}.1

Instead of assuming that consumers can buy either only good A or only good B, this

model allows consumers to purchase goods A and B simultaneously and focuses on

identifying the complementarity between goods.

The choice set for consumers is C = {A,B,AB,O}, where A (or B) denotes

purchasing only good A (or B), AB denotes purchasing A and B simultaneously, and

O denotes the outside option. I assume that consumers buy at most one unit of each

1Appendix B.1 studies the case of more than two goods and establishes partial identification
results under additional assumptions.
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good, and they select the choice yielding the highest utility in their choice set.

Let uijt denote consumer i’s utility from consuming choice j ∈ C at time t. Fol-

lowing Gentzkow (2007), let Γit = (uiABt−uiAt)−(uiBt−uiOt) denote the incremental

utility of consuming good B when good A is also consumed. The utility uijt is speci-

fied as2

uiAt = X ′iAtβ0 + αiA + εiAt,

uiBt = X ′iBtβ0 + αiB + εiBt,

uiABt = uiAt + uiBt + Γit,

uiOt = 0,

(1)

Here Xijt ∈ R
dx denotes a vector of observed characteristics, which may include

consumer i’s characteristics (e.g., income), product j’s characteristics (e.g., price),

and the interaction terms between them; αij ∈ R denotes an unobserved individual-

specific fixed effect for product j that does not change over time, such as consumers’

loyalty to a brand; εijt ∈ R denotes an unobserved and time-varying shock that affects

consumers’ utility over time; and β0 ∈ Rdx is a finite-dimensional unknown parameter

vector. Without loss of generality, we normalize the utility of the outside option to

zero so the utilities of the remaining choices are defined relative to the utility of the

outside option.

The sign of the incremental utility Γit represents the complementarity relationship

between the goods. Two goods are considered complements if their combined utility

is greater than the sum of their individual utilities (Γit > 0), and substitutes if the

reverse is true (Γit < 0). This definition is equivalent to an alternative definition of

substitution patterns using aggregate demand, as discussed in Section 2.1. In this

model, Γit can be either positive, negative, or zero, which allows for the possibility

that two goods can be either substitutes or complements. I provide identification

results for both the coefficient β0 and the complementarity Γit.

In addition to the covariate Xijt, I assume that consumer i’s choice at time t is

observed which is denoted as Yit ∈ {A,B,AB,O}. Consumers select the choice with

the highest utility, implying

Yit = j =⇒ uijt ≥ uikt for all k ∈ C.
2In Appendix B.4, I discuss how this utility specification connects to a conventional discrete

choice model. In Appendix B.3, I also investigate a class of nonseparable utility functions.
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To simplify analysis, I assume that tie outcomes between choices happen with a

zero probability, eliminating the need to account for such situations. This assumption

is satisfied as long as one of the error terms is continuously distributed. Even if ties

happen with nonzero probability, all identification results hold as long as the tie-

breaking rule is fixed over time.

The main objective of this paper is to identify the substitution/complementarity

relationship and the coefficient β0 from consumers’ choices Yit and covariates Xijt.

Next, I introduce some assumptions about the model.

Assumption 1. The incremental term Γit in the utility uiABt is specified as

Γit = Γ(Zi),

where Zi ∈ Rdz denotes a vector of observed characteristics, and Γ can be an unknown

function of Zi.

Assumption 1 requires the complementarity to only depend on observed covari-

ates Zi. The function Γ is flexible and can be unknown to researchers, which could

admit rich complementarity patterns. The covariate Zi may include consumers’ char-

acteristics such as income and age so that Assumption 1 allows for heterogeneous

complementarity relationships through observed characteristics. I assume the covari-

ate Zi to be fixed over time for any t. If the covariate changes over time, then the

same analysis can be conducted conditional on the same value of the covariate over

time: Zis = Zit = z.

One restriction of Assumption 1 is that it excludes unobserved heterogeneity in

the complementarity and assumes the same complementarity relationship for indi-

viduals with the same characteristic Zi = z. This structure allows us to not only

identify the sign of the complementarity Γ(z) but also bound the magnitude of the

complementarity Γ(z) given Zi = z. In Section 6, I consider an extension that allows

for unobserved heterogeneity in the complementarity Γit, where we can only obtain

weaker results and partially identify the distribution of the sign of Γit.

Assumption 2 (Exclusion). There exists at least one characteristic X∗it in Xit =

(XiAt, XiBt) that is not in Zi, and its coefficient is nonzero.

The exclusion assumption requires that there exists one variable that only in-

fluences the utility for good A or B but not the complementarity between the two
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goods. One example of this variable is the price of good A or B, which affects the

utility of a single good but may not influence the complementarity between the two

goods. The sign of the coefficient for X∗it can still be unknown to researchers. More-

over, this assumption does not restrict the covariate Zi; any variable affecting the

complementarity is allowed to influence the utility of a single good.

The last assumption is the stationarity condition for the distribution of the un-

observed shocks. Let Xit = (XiAt, XiBt), αi = (αiA, αiB), and εit = (εiAt, εiBt) collect

covariates, fixed effects, and error terms of the two goods.

Assumption 3. (Stationarity) The distribution of εit conditional on (Xis, Xit, Zi, αi)

is stationary over time; that is,

εis | Xis, Xit, Zi, αi
d∼ εit | Xis, Xit, Zi, αi for any s, t ≤ T.

This assumption is a multinomial extension of the conditional homogeneity as-

sumption in Manski (1987). It is commonly used in the literature on panel multino-

mial choice models, including Pakes and Porter (2022), Shi, Shum, and Song (2018),

and Gao and Li (2020), who study identification of the coefficient β0 under this as-

sumption. Assumption 3 restricts the conditional distribution of εit to be stationary

over time, but it allows the error term εit to be dependent across choices and over

time. In addition, it does not impose any distributional restrictions on the unobserved

term εit. Therefore, the standard logit/probit models and i.i.d. assumption of the

error term can be nested in Assumption 3.

One crucial feature of Assumption 3 is that it can accommodate endogenous co-

variates by allowing for arbitrary dependence structures between the fixed effects

αij and the covariates Xit. Endogeneity is important in demand estimation because

the price of a product could potentially depend on the unobserved heterogeneity of

the product, such as the quality of the product or consumers’ taste for the prod-

uct. Chesher, Rosen, and Smolinski (2013) and Berry and Haile (2014) provide more

detailed discussions about the importance of allowing endogeneity in demand estima-

tion.

Of course, Assumption 3 does impose some restrictions. For example, it excludes

some dependence structures between εit and the covariate Xit. Consider that if εit

only depends on Xit for any period t, then εis may have a different distribution than

εit when Xis and Xit take different values. However, some dependence structures
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between εit and Xit are still allowed in Assumption 3: for example, if εit depends on

covariates in a time-invariant form such as 1
T

∑T
t=1 X

′
itβ0, Assumption 3 still holds.

2.1 Substitution Patterns

This section discusses the relationship between two different definitions of substitution

patterns. My paper uses the sign of Γ(z) to represent the substitution relationship

between two goods, which captures the incremental utility from consuming the bundle

compared to consuming a single good. As shown in Lemma 1, this turns out to be

equivalent to an alternative definition that was previously used in the literature.

The alternative definition of substitution patterns centers on how the demand for

good A (or B) is affected by an increase in the price of good B (or A). The two goods

are substitutes if the demand for good A increases, complements if it decreases, and

independent if the demand does not change. Let pjt denote the price of good j whose

coefficient is nonzero, and let X̃it = Xit \ {pBt} denote the remaining covariates in

Xit excluding the price of good B. I fix all other covariates X̃is = X̃it = x̃ over time

and compare the conditional demand for good A under different prices pBs 6= pBt of

good B. The demand for good A comes from two sources: individuals who purchase

only good A and those who purchase the bundle AB. Let D` = {`, AB} collect all

choices containing good ` ∈ {A,B}. Let sign(x) = 1{x > 0} − 1{x < 0} denote the

sign function.

The substitution pattern sAB(z) conditional on the covariate Zi = z is defined as

sAB(z) ≡ sign

{
Pr(Yis ∈ DA | pBs, pBt, x̃, z)− Pr(Yit ∈ DA | pBs, pBt, x̃, z)

pBs − pBt

}
.

The value of sAB(z) ∈ {−1, 0, 1} represents the complementarity relationship

between goods A and B.3 For consumers with the covariate Zi = z, the two goods are

substitutes if sAB(z) = 1, independent if sAB(z) = 0, and complements if sAB(z) =

−1. Under the aforementioned Assumptions 1-3, the value of sAB(z) is the same

defined by any two periods s 6= t, and it is independent of other variables except z

since the complementarity term Γ(z) depends only on z; therefore, sAB(z) is written

as a function of only z.

3The definition of sAB(z) is symmetric in goods A and B, in the sense that sAB(z) = sBA(z),
under Assumptions 1-3.
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It is often difficult to study substitution patterns directly from the definition of

sAB(z). The term sAB(z) uses only variation in prices and requires the fixing of all

other covariates. This may not be feasible since the other covariates may change

simultaneously with prices or the covariates may include time-varying variables such

as time dummies. In addition, variation in prices may not be available in some

scenarios in which the prices of products are constant over time. Moreover, as the

definition sAB(z) involves conditional choice probabilities, directly estimating sAB(z)

may perform poorly, especially when the dimension of covariates is large.

The next lemma establishes the relationship between sAB(z) and the incremental

utility Γ(z).

Lemma 1. Under Assumptions 1-3, the following holds for any z:

Γ(z)sAB(z) ≤ 0.

Lemma 1 shows that sAB(z) always has the opposite sign of the incremental utility

term Γ(z). This lemma implies that the sign of sAB(z) can be learned if the sign of

the incremental utility Γ(z) is identified. Therefore, identifying the complementarity

term Γ(z) is sufficient for studying substitution patterns defined by sAB(z).

To illustrate the intuition of Lemma 1, I will focus on the case in which the

incremental utility is positive, i.e., Γ(z) > 0. In this case, consumers with a small

utility from a single good will still purchase the bundle since they can obtain additional

positive utility from consuming the two goods together. When the price of good B

increases such that the utility of the bundle decreases, some consumers will switch

from buying the bundle to buying the outside option since their utility from a single

good is small. Therefore, the demand for good A decreases, which implies sAB(z) ≤ 0.

A similar result to Lemma 1 is shown in Gentzkow (2007) with cross-sectional

data. The difference is that Gentzkow (2007) requires an independence condition

between unobserved error terms and observed covariates, so his results do not apply

to the case with endogenous covariates. My paper leverages the stationarity assump-

tion, which allows for endogenous covariates. Therefore, Lemma 1 shows that even

with endogenous covariates, the relationship between the two definitions of substi-

tution patterns (Γ(z)sAB(z) ≤ 0) still holds by exploiting intertemporal variation in

covariates.
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3 Testing Complementarity

Before introducing the identification results, this section develops a method to test

the complementarity relationship. This approach does not involve the estimation of

any model parameters and directly constructs testable implications that only depend

on observed variables.

Testing the substitution or complementarity relationship between two goods can

play a crucial role in shaping policy regulations. For example, when determining

whether to impose stricter or more lenient regulations on e-cigarettes, it is essential

to examine their relationship with traditional cigarettes. Furthermore, investigating

the substitution or complementarity relationship between electric vehicles and tradi-

tional gasoline-powered vehicles can help the government in making effective policy

regulations on electric vehicles.

In this section, I will focus on testing the complementarity between two goods; the

analysis for testing the substitutability is similar, which is provided in Appendix B.5.

For consumers with covariate Zi = z, testing the complementarity relationship be-

tween goods is equivalent to testing Γ(z) ≥ 0. The null hypothesis H0 and alternative

hypothesis H1 are given as

H0 : Γ(z) ≥ 0 H1 : Γ(z) < 0.

The main idea of testing the complementarity is that changing the covariate index

X ′iAtβ0 of good A will affect the demand for good B in different directions, depending

on their substitution/complementarity relationships. If the two goods are comple-

ments (under H0), an increase in the covariate index of good A will encourage con-

sumers to purchase the bundle and thus increase the demand for good B. However,

if the two goods are substitutes (under H1), people will switch to choosing only good

A such that the demand for good B decreases. Therefore, we can reject H0 when a

decrease in the demand for good B is observed in this scenario.

However, the sign of the covariate index X ′ijtβ0 is unknown since it involves the

unknown parameter β0. Therefore, the first step of testing the complementarity is to

learn the sign of covariate indices of two goods using observed variables (Xit, Zi, Yit).

Let Pt({j} | xs, xt, z) denote the probability of choosing j ∈ C at time t conditional
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on covariates (Xis, Xit) = (xs, xt) and Zi = z, given as

Pt({j} | xs, xt, z) = Pr(Yit = j | xs, xt, z).

The conditional choice probability depends only on observed variables, which can

be identified from data. Since the conditional distribution of error terms is the same

over time (as per Assumption 3), any variation in choice probabilities can only arise

from changes in covariate indices. From the variation in observed choice probabilities,

we can infer the signs of the covariate indices and construct testable implications.

Let ξ1
s,t(xs, xt | z) denote an indicator for increasing probabilities of all choices

j ∈ {A,B,AB} conditional on (Xis, Xit) = (xs, xt) and given Zi = z:

ξ1
s,t(xs, xt | z) = 1

{
Ps({j} | xs, xt, z)− Pt({j} | xs, xt, z) ≥ 0, ∀j ∈ {A,B,AB}

}
.

When an increase in conditional probabilities of all choices j ∈ {A,B,AB} is

observed, it implies that the covariate indices of both goods increase:

ξ1
s,t(xs, xt | z) = 1 =⇒ x′Asβ0 − x′Atβ0 ≥ 0, x′Bsβ0 − x′Btβ0 ≥ 0.

The above relationship exploits variation in conditional probabilities of multiple

choices to identify the signs of covariate indices of both goods. If we observe an

increase in the probability of only one choice, such as good A, it could be due to

either an improvement in good A or a decline in good B, and we are unable to

distinguish between the two scenarios. In contrast, if we observe an increase in the

probabilities of all choices {A,B,AB}, it can only occur when both goods improve,

enabling us to determine the signs of the variation in the covariate indices for both

goods.

Now we are ready to establish testable conditions for the null hypothesis. With

the null hypothesis of the two goods being complements, an increase in the covariate

indices of both goods would result in an increase in demand for the two goods. This

relationship generates testable implications for the null hypothesis. If a decrease in

demand for either good is observed, it suggests that the two goods are substitutes

and the null hypothesis is rejected.

Recall that D` = {`, AB} for ` ∈ {A,B}, and the conditional demand of good `
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is expressed as

Pr(Yit ∈ D` | xs, xt, z) = E[1{Yit ∈ D`} | xs, xt, z].

Proposition 1. Under Assumptions 1-3, the following conditional moment inequal-

ities hold under the null hypothesis H0 given Zi = z,

E
[
ξ1
s,t(xs, xt | z)

(
1{Yis ∈ D`} − 1{Yit ∈ D`}

) ∣∣ xs, xt, z] ≥ 0,

for any (xs, xt), ` ∈ {A,B}, s 6= t ≤ T .

Proposition 1 provides testable implications for the null hypothesis H0 by char-

acterizing conditional moment restrictions that depend only on observed variables.

Therefore, the null hypothesis can be tested by directly testing the above conditional

moment inequalities. The conditions in the proposition apply to any two periods

and any pair of covariates, allowing us to test for complementarity by exploiting the

variation in covariates over time.

4 Identification

Besides testing the sign of Γ(z), we may also be interested in the value of the com-

plementarity Γ(z) as well as the utility coefficient β0. This section establishes sharp

identification results for the parameter θ0 = (β0,Γ). The observed variables include

the covariates (Xit, Zi) and consumers’ choices Yit ∈ C in each period. Since only the

relative utility between choices matters for consumers’ decisions, the parameter can

be only identified up to a constant. Therefore, I normalize the first element θ1 of the

parameter θ to be one for the following analysis: Θ = {θ : |θ1| = 1}.
For any subset K ⊂ C, let Pt(K | xs, xt, z) denote the conditional probability

of Yit ∈ K at time t given covariates (Xis, Xit) = (xs, xt) and Zi = z; that is, the

probability of existing one choice in the set K generating the highest utility among

all choices:

Pt(K | xs, xt, z) ≡ Pr(Yit ∈ K | xs, xt, z)

= Pr
(
∃j ∈ K s.t. ∀k ∈ C uijt ≥ uikt | xs, xt, z

)
.

When K = {j} is a singleton, this reduces to the conditional choice probability (CCP)
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of j. The main idea of the identification analysis is to derive identifying restrictions of

the true parameter θ0 from intertemporal variation in conditional choice probabilities

across two different periods. All parameters satisfying those identifying restrictions

form an identified set for the true parameter.

Let δ`t = x′`tβ0 denote the covariate index for good ` ∈ {A,B} given Xi`t = x`t.

Let δABt = δAt + δBt and δOt = 0 denote the covariate indices for bundle AB and the

outside option, respectively. Let ∆s,tδj = δjs − δjt denote the change in the covariate

index for choice j ∈ C between periods s and t.

In models assuming that consumers can buy only one good at a time, two goods

can only be substitutes. Since the complementarity relationship is known, the only

unknown factor affecting conditional choice probabilities is variation in covariate in-

dices of all choices. My paper allows for the possibility that two goods can be either

substitutes (Γ(z) < 0) or complements (Γ(z) > 0) and the complementarity relation-

ship is unknown. Therefore, two unknown sources are affecting conditional choice

probabilities in this paper: one is changes in covariate indices and the other is the

complementarity relationship between the two goods. Distinguishing between the two

sources poses a challenge for the identification analysis.

The following proposition characterizes the identifying restrictions for the param-

eter θ0 under Assumptions 1-3. Let C1∨C2 mean that either condition C1 or C2 holds

or both hold, and let C1 ∧ C2 mean that both C1 and C2 hold.

Proposition 2. Under Assumptions 1-3, the following conditions hold for any (xs, xt, z)

and any s 6= t:

(1) comparisons of CCP of choice j ∈ C:

Ps({j} | xs, xt, z) > Pt({j} | xs, xt, z) =⇒ ∃k 6= j s.t. ∆s,tδj > ∆s,tδk; (ID1)

(2) comparisons of the demand for good ` ∈ {A,B}:

Ps
(
{`, AB} | xs, xt, z

)
> Pt

(
{`, AB} | xs, xt, z

)
=⇒

{∆s,tδ` > 0} ∨
{

∆s,t(δ` + sign(Γ(z))δ`−1) > 0, |Γ(z)| > −∆s,tδ`

}
,

(ID2)

where `−1 ∈ {A,B} and `−1 6= `;
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(3) comparisons of the sum of CCP of two choices:

Ps({AB} | xs, xt, z) + Pt({O} | xs, xt, z) > 1 =⇒{
Γ(z) > −min{∆s,tδA,∆s,tδB}

}
∧ {∆s,t(δA + δB) > 0},

Ps({A} | xs, xt, z) + Pt({B} | xs, xt, z) > 1 =⇒{
Γ(z) < min

{
∆s,tδA,−∆s,tδB}

}
∧ {∆s,t(δA − δB) > 0}.

(ID3)

Proposition 2 characterizes identification restrictions for the parameter θ0 from

comparisons of conditional choice probabilities across two periods that can be iden-

tified from data. The identifying restrictions for θ0 in Proposition 2 are free from

unobserved terms, such as the fixed effects αi and the error term εit. As the results

hold for any fixed length T of panel data, we can utilize variation in conditional choice

probabilities for any two periods to identify θ0 and take intersections of the identified

sets. Later I will formulate conditional moment inequalities based on the identifying

restrictions in Proposition 2, which can be used to conduct estimation and inference

for the parameter θ0.

Condition (ID1) in Proposition 2 contains the identifying restrictions for the co-

efficient β0. The intuition of this result is described as follows: if the conditional

probability of selecting choice j increases, then it is impossible that choice j becomes

worse (in terms of the covariate index) compared to all other choices. Therefore, it

can be inferred that the covariate index for choice j should increase relative to at

least one other choice.

The remaining two conditions in Proposition 2 provide novel identification results

for the complementarity parameter Γ(z). Condition (ID2) identifies the sign of the

complementarity Γ(z) and bounds its absolute value by comparing the conditional

demand of the two goods over time. Condition (ID3) establishes both lower and upper

bounds for the complementarity Γ(z) using the sum of probabilities of two different

choices over two periods. Next, I will explain the intuition behind the two conditions.

Condition (ID2) mainly exploits the idea that the relationship between the covari-

ate index of one good and the demand for the other good is different under different

complementarity relationships between the two goods. When the two goods are com-

plements, an increase in the covariate index of good A will incentivize consumers to

buy the bundle AB, resulting in an increase in demand for good B. So if a decrease

15



in demand for either good is observed, the two goods must be substitutes (Γ(z) < 0).

Similarly, when the covariate index for good A decreases and the covariate index for

good B increases along with observing an increase in the demand for good A, the two

goods are identified as complements (Γ(z) > 0).

Condition (ID3) in Proposition 2 can bound the value of the complementarity

Γ(z) by looking at the sum of conditional probabilities of two choices over time.

For example, when the sum of the conditional probabilities of buying two goods

together and neither good is large, then a lower bound for the complementarity Γ(z)

is established. The intuition is that when good A becomes less attractive, consumers

will switch from buying two goods together to buying neither good if the two goods

are complements, but they will switch to buying only good B if the two goods are

substitutes. Therefore, if a large probability of buying two goods together and neither

good is observed, we can infer the complementarity between the two goods and provide

a lower bound for Γ(z). Similarly, if the sum of the conditional probabilities of buying

a single good is large, then the upper bound for the value of Γ(z) can be obtained.

Remark 1. The identification results in Proposition 2 rely on the choice probabilities

for all options {A,B,AB,O}. However, in certain scenarios, we may only observe

the demand for two goods, without knowing if these goods are purchased jointly or

separately. In such cases, we can still exploit Condition (ID1) with j = {O} and

Condition (ID2) to identify θ0, although the identification results will be less informa-

tive than when we have access to the choice probabilities for all options {A,B,AB,O}.

The identifying restrictions (ID1)-(ID3) in Proposition 2 characterize an identified

set ΘI for θ0, which is defined as

ΘI = {θ ∈ Θ : conditions (ID1)− (ID3) hold with θ in place of θ0}.

Theorem 1. Under Assumptions 1-3, the identified set ΘI is sharp.

Theorem 1 shows that conditions (ID1)-(ID3) have exhausted all available infor-

mation from the observed data for the parameter θ0. The proof of the sharpness is

conducted through direct construction. For any parameter in the identified set ΘI ,

I construct an underlying DGP that satisfies Assumptions 1-3 and matches the ob-

served conditional choice probabilities, which shows the sharpness of the identified

set ΘI . The main challenge of the construction is that the unknown DGP involves
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conditional distributions over the whole space of unobserved error terms, which are

infinite dimensional.

I address this difficulty by constructing “choice sets,” which are collections of un-

observed terms such that a single choice is selected conditional on covariates. It is

sufficient to focus on constructing the distributions on the choice sets because their

distributions determine the observed choice probabilities. The number of choice sets

is finite due to the finite number of choices; accordingly, I only need to assign proba-

bilities on the finite number of sets, which simplifies the construction. Then the paper

shows that for any parameter in the identified set ΘI , there exists a conditional dis-

tribution on the choice sets that satisfies the assumptions and generates the observed

choice probabilities. The construction of the probabilities on the choice sets depends

on the sign of the complementarity Γ(z) as well as the covariate index ∆s,tδj, which

is discussed in detail in Appendix A.3.

Some discussion of Theorem 1 is in order. First, similar to Pakes and Porter

(2022), the identification analysis in Proposition 2 and the sharpness result for ΘI

can be extended to a more general model, ui`t = f(Xi`t, β0) + g(αi`, εi`t), where f is a

known function up to a finite-dimensional parameter β0 and g is a function that can

be unknown to econometrician. This utility function allows for infinite dimensional

fixed effects and idiosyncratic shocks as well as admits arbitrary interactions between

them. Appendix B.3 also discusses a class of utility functions that can be nonseparable

between covariates and unobserved fixed effects/error terms. Second, the identified

set ΘI employs only marginal choice probabilities at each period yet it is shown to be

sharp. Therefore, joint choice probabilities over different periods do not provide any

additional information for the parameter θ0. Moreover, the sharpness result exploits

the correlations of error terms across choices and over time. So if one is willing to

impose additional assumptions on the dependence structure (e.g., i.i.d.), then the

identified set ΘI could be further tightened.

4.1 Point Identification

This section studies the conditions under which the model parameters can be point

identified up to scale. The analysis depends on the specification of the additional

utility term Γ(Zi). I focus on point identification under a linear specification of the

complementarity: Γ(Zi) = Z ′iγ0.
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For simplicity of notation, I consider a two-period model (T = 2) to illustrate the

idea.4 Let ∆Xi` = Xi`2−Xi`1 denote the change in observed covariates for consumer

i and good ` ∈ {A,B} over the two periods, and let ∆Xi = (∆XiA,∆XiB) collect

the changes in covariates for the two goods. I use a superscript k to denote the kth

element of a vector, e.g., ∆Xk
iA represents the kth element of the vector ∆XiA.

I first introduce sufficient conditions for point identification of the coefficient β0.

The coefficient β0 can only be point identified up to scale since multiplying consumers’

utilities of all choices by a positive constant will not change observed choices.

Assumption 4. The density of εit conditional on (Xi1, Xi2, Zi, αi) is positive every-

where on R2 for t ∈ {1, 2}.

Assumption 5. For any ` ∈ {A,B}, there exists k` that satisfies βk`0 6= 0. Let

∆X̃i = ∆Xi \ (∆XkA
iA ,∆X

kB
iB ) denote the remaining elements in ∆Xi. The density of

(∆XkA
iA ,∆X

kB
iB ) conditional on (∆X̃i, Zi) is positive everywhere on R2. Furthermore,

the support of ∆Xi` is not contained in any proper linear subspace of Rdx.

Assumption 4 eliminates the uninformative scenario where conditional choice

probabilities remain unchanged despite changes in the covariate indices over time.

Assumption 5 is a support condition on the covariate ∆Xi. It requires at least one

covariate for each good to have large support, while the support of the remaining co-

variates is unrestricted. The large support condition guarantees that there is sufficient

variation in the covariate over time such that the true parameter can be distinguished

from any other candidate parameters.

Under these assumptions, β0 can be point identified by using the first identifying

restriction (condition (ID1)) in Proposition 2. For any parameter b such that b 6= kβ0,

∀k > 0, the large support condition in Assumption 5 implies that there exists one

value ∆x` of the covariate such that the covariate index ∆x′`β has different signs

under the true parameter β0 and the candidate parameter b. The conditional choice

probabilities then change in different directions under β0 and b so that the parameter

β0 is identified. For example, suppose that the covariate index satisfies ∆x′`β0 > 0

and ∆x′`b < 0 for any ` ∈ {A,B}. Then under Assumption 4, the conditional choice

probability of buying bundle AB will strictly increase under the true parameter β0,

but strictly decrease under the parameter b. Therefore, β0 is identified.

4With more than two periods, it is straightforward that point identification can be achieved when
there exists a pair of periods that satisfy Assumptions 4-6.
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Since β0 is point identified, the sign of the covariate index ∆X ′ijβ0 is also iden-

tified. Next, I present the conditions for point identification (up to scale) of the

complementarity parameter γ0.

Assumption 6. There exists k such that γk0 6= 0. Let Z̃i = Zi \ Zk
i denote the

remaining elements in Zi. The density of Zk
i conditional on (Xi1, Xi2, Z̃i) is positive

everywhere on R. Furthermore, the support of Zi is not contained in any proper linear

subspace of Rdz .

Similar to Assumption 5, this assumption requires a large support restriction

on the covariate Zi. Based on condition (ID2) in Proposition 2, the sign of the

complementarity Z ′iγ0 is identified from intertemporal variation in the conditional

demand for the two goods. Since the sign of Z ′iγ0 is identified, the parameter γ0 is

also point identified up to scale under the large support assumption. The analysis for

γ0 is similar to the coefficient β0. For any candidate parameter γ̃ such that γ̃ 6= kγ0,

∀k > 0, Assumption 6 ensures that there exists some value of the covariate Zi such

that the sign of the complementarity Z ′iγ is different under the true parameter γ0 and

the candidate parameter γ̃. Thus, the parameter γ0 can be point identified.

Theorem 2. Under Assumptions 1-6 and Γ(Zi) = Z ′iγ0, the parameters β0 and γ0

are point identified up to scale.

5 Conditional Moment Inequalities

The identified set ΘI characterized by conditions (ID1)-(ID3) in Proposition 2 is ab-

stract and it is a challenging task to check whether every candidate parameter satisfies

all of the identifying conditions. This section develops an alternative characterization

of the identified set ΘI by constructing conditional moment inequalities of the pa-

rameter. Based on this characterization, the literature has developed many methods

to do inference for conditional moment inequalities (e.g., Andrews and Shi (2013),

Chernozhukov, Lee, and Rosen (2013), and Armstrong (2015)).

The identification conditions (ID1)-(ID3) in Proposition 2 share a similar struc-

ture, which involves deriving restrictions for the parameter θ0 through intertemporal

comparisons of conditional choice probabilities. I focus on the first condition (ID1)

in Proposition 2 to describe the idea of constructing conditional moment inequalities.
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Let Wist = (Xis, Xit, Zi) collect all of the covariates at the two periods (s, t), and let

wst = (xs, xt, z) denote one realization of the covariate Wist.

Condition (ID1) exploits comparisons of the conditional probability of a single

choice j ∈ C to derive restrictions for the parameter. Let λjs,t(wst, θ) denote the

indicator index of the identifying restriction in condition (ID1), defined as

λjs,t(wst, θ) = 1
{
∃ k 6= j s.t. ∆s,tx

′
jβ > ∆s,tx

′
kβ}.

Condition (ID1) derives the identifying restriction λjs,t from a positive variation in

the conditional probability of selecting choice j over time:

Ps({j} | wst)− Pt({j} | wst) > 0 =⇒ λjs,t(wst, θ0) = 1.

The contraposition of the above condition is presented as follows: if the identifying

restriction λjs,t does not hold, then the variation in the conditional probability of

selecting choice j is nonpositive.

λjs,t(wst, θ0) = 0 =⇒ Ps({j} | wst)− Pt({j} | wst) ≤ 0.

Plugging into the definition of the conditional choice probability Pt({j} | wst) =

E[1{Yit = j} | Wist = wst], the above condition leads to the following conditional

moment inequality for any wst,

gjs,t(wst, θ0) = E
[
(1− λjs,t(wst, θ0))(1{Yis = j} − 1{Yit = j}) | Wist = wst

]
≤ 0.

The above conditional moment inequality holds since either the binary index holds

λjs,t(wst, θ0) = 1 so that the moment function gjs,t is zero or the binary index does not

hold λs,t(wst, θ0) = 0 implying that the function gjs,t is nonpositive. I provide an

equivalent characterization to condition (ID1) using conditional moment inequalities.

The characterization for conditions (ID2)-(ID3) can be constructed similarly.

Condition (ID2) derives restrictions of the parameter from comparisons of the

demand for good ` ∈ {A,B}. The indicator λD`
s,t (wst, θ) of the identifying restriction
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in condition (ID2) is defined as follows, let `−1 ∈ {A,B} and `−1 6= `,

λD`
s,t (wst, θ) = 1

{
{∆s,tx

′
`β > 0}

∨
{

∆s,t(x` + sign(Γ(z))x`−1)
′β > 0, |Γ(z)| > −∆s,tx

′
`β
}}

.

From comparisons of the demand for good ` ∈ {A,B}, the conditional moment

inequality can be constructed as follows:

gD`
s,t (wst, θ0) = E

[
(1− λD`

s,t (wst, θ0))(1{Yis ∈ D`} − 1{Yit ∈ D`}) | Wist = wst
]
≤ 0.

Condition (ID3) derives lower and upper bounds for the complementarity Γ(z)

from the sum of conditional probabilities of two choices over two different periods.

The binary indices of the identifying restrictions in condition (ID3) are defined as

λLs,t(wst, θ) = 1

{{
Γ(z) > −min{∆s,tx

′
Aβ,∆s,tx

′
Bβ}

}
∧ {∆s,t(xA + xB)′β > 0}

}
,

λUs,t(wst, θ) = 1

{{
Γ(z) < min{∆s,tx

′
Aβ,−∆s,tx

′
Bβ}

}
∧ {∆s,t(xA − xB)′β > 0}

}
.

Similarly, the conditional moment inequalities are constructed as follows based on

condition (ID3) in Proposition 2:

gLs,t(wst, θ0) = E
[
(1− λLs,t(wst, θ0))(1{Yis = AB}+ 1{Yit = O} − 1) | Wist = wst

]
≤ 0,

gUs,t(wst, θ0) = E
[
(1− λUs,t(wst, θ0))(1{Yis = A}+ 1{Yit = B} − 1) | Wist = wst

]
≤ 0.

I have developed conditional moment inequalities that are equivalent to the identi-

fying conditions (ID1)-(ID3) in Proposition 2. Let gs,t = ({gjs,t}j∈C, gDA
s,t , g

DB
s,t , g

L
s,t, g

U
s,t)
′

denote a vector of all conditional moment functions. The identified set ΘI is charac-

terized by the set of parameters satisfying the conditional moment inequalities.

Proposition 3. Under Assumptions 1-3, the following holds:

ΘI = {θ ∈ Θ : gs,t(wst, θ) ≤ 0 ∀wst, ∀s, t ≤ T}.

Proposition 3 characterizes the identified set using conditional moment inequal-

ities. For estimation and inference, we need to specific a parametric form for the
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function Γ (such as a linear function) so that the dimension of the unknown parame-

ter is finite. Then, the estimation and inference for the parameter can be conducted

using methods in the literature developed for conditional moment inequalities.

6 Extension: Latent Complementarity

The previous sections focused on the case where heterogeneity in the complementar-

ity Γit only comes from observed covariates. This section accommodates unobserved

heterogeneity in the complementarity across individuals by allowing Γit to be different

for each individual regardless of their covariates. The sign of Γit captures the het-

erogeneous complementarity relationship among the two goods for each individual.

Therefore, I focus on identifying the distribution of the sign of Γit which represents

the fraction of people for whom the two goods are complements or substitutes.

Next, I introduce some assumptions on the complementarity and error terms.

Assumption 7. The joint distribution of (εit,Γit) conditional on (αi, Xis, Xit) is

stationary over time:

(εis,Γis) | Xis, Xit, αi
d∼ (εit,Γit) | Xis, Xit, αi for any s, t ≤ T.

Assumption 7 is similar to Assumption 3, except it also assumes a stationarity con-

dition for the complementarity Γit. Under the assumption that the complementarity

Γit only depends on observed covariates (Assumption 1), Assumption 7 degenerates

to the stationarity condition in Assumption 3 since Γit is a constant conditional on

the covariate.

Assumption 7 only requires that the distribution of Γit remains stationary over

time, but it still allows the complementarity Γit for each individual to vary over time.

Moreover, this assumption does not restrict the dependence between the complemen-

tarity Γit with the unobserved terms, including the fixed effects αi and the error terms

εit.

Let Xi = (Xit)
T
t=1 collect the covariate of all time periods.

Assumption 8. The complementarity Γit is independent of the covariate Xi condi-

tional on the fixed effects αi: Γit ⊥⊥ Xi | αi.

Assumption 8 assumes the independence between the complementarity Γit and the

vector of covariates for all periods. Under this condition, variation in all covariates
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can be used to identify the distribution of the complementarity Pr(Γit ≥ 0). This

assumption can be relaxed to accommodate the situation where there is a subset of

covariates that are independent of Γit while other covariates can be correlated with

Γit. In such a scenario, the analysis can be conducted conditional on the covariates

that are potentially correlated with the complementarity.

Under the above assumptions, I establish the identification of the fraction of in-

dividuals for whom the two goods are complements, denoted as η = Pr(Γit ≥ 0).

According to Assumption 7, the distribution of Γit is stationary over time so that η

does not depend on t. The identification result for Pr(Γit < 0) can be directly derived

using the formula Pr(Γit < 0) = 1− Pr(Γit ≥ 0) so it is omitted here.

The intuition of the identification strategy for η is described as follows. The

conditional demand for one good can be expressed as a mixture of two groups: people

for whom the two goods are complements (Γit ≥ 0) and people for whom the two

goods are substitutes (Γit < 0). When the covariate index of good A increases, it

will affect the demand for good B for the two groups of people in different directions.

This relationship can help identify the fraction of the two groups.

Similar to Section 3, the first step is to derive the sign of variation in covari-

ate indices (∆s,tδA,∆s,tδB) from conditional choice probabilities. Let ξ1
s,t(xs, xt) and

ξ2
s,t(xs, xt) be defined as

ξ1
s,t(xs, xt) = 1

{
Ps({j} | xs, xt)− Pt({j} | xs, xt) ≥ 0, ∀j ∈ {A,B,AB}

}
,

ξ2
s,t(xs, xt) = 1

{
Ps({j} | xs, xt)− Pt({j} | xs, xt) ≥ 0, ∀j ∈ {A,AB,O}

}
.

From the variation in observed choice probabilities, the sign of variation in covari-

ate indices of two goods can be identified. When an increase in probabilities of all

choices {A,B,AB} is observed, it can be inferred that the covariate indices of both

goods should increase. Similarly, an increase in probabilities of all choices except

choice B suggests that the covariate index of good A increases and that of good B

decreases.

Let X 1
s,t = {(xs, xt) | ξ1

s,t(xs, xt) = 1} and X 2
s,t = {(xs, xt) | ξ2

s,t(xs, xt) = 1} denote

the collection of covariates such that ξ1
s,t(xs, xt) = 1 and ξ2

s,t(xs, xt) = 1 respectively,

which implies

(xs, xt) ∈ X 1
s,t =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≥ 0,

(xs, xt) ∈ X 2
s,t =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≤ 0.
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Given the sign of covariate indices, using variation in the demand for two goods

can identify the fraction of people for whom the two goods are complements η =

Pr(Γit ≥ 0). To convey the idea, I first consider that the covariate indices for goods A

and B both increase: (xs, xt) ∈ X 1
s,t. In this scenario, the demand for the two goods

would increase for people for whom the two goods are complements, but may decline

for people for whom the two goods are substitutes. Therefore, a decline in demand

for either of the two goods in data can only come from people with Γit < 0, which

can help establish a lower bound for the fraction of people with Γit < 0 and thus an

upper bound for the fraction of people with Γit ≥ 0. Similarly, a lower bound for

η = Pr(Γit ≥ 0) can be provided when covariates satisfy (xs, xt) ∈ X 2
s,t.

The next proposition characterizes the partial identification results for η = Pr(Γit ≥
0).

Proposition 4. Under Assumptions 7-8, η can be bounded as η ∈ [Lη, Uη], where

Lη = sup
(xs,xt)∈X 2

st,`∈{A,B},s,t≤T

{
(−1)1{`=A}[Ps(D` | xs, xt)− Pt(D` | xs, xt)]

}
,

Uη = inf
(xs,xt)∈X 1

st,`∈{A,B},s,t≤T

{
Ps(D` | xs, xt)− Pt(D` | xs, xt)

}
+ 1.

Proposition 4 establishes both lower and upper bounds for η by exploiting variation

in the demand for the two goods under different sets of covariate indices. According

to the definition of the lower and upper bounds, it is always true that Lη ≥ 0, Uη ≤ 1

and the bounds use variation in all values of covariates over any two periods. The

range of the bounds depends on variation in conditional demand of the two goods,

and larger variation leads to tighter bounds. The result in Proposition 4 also provides

testable implications for Assumptions 7-8 since it implies that the upper bound should

be no smaller than the lower bound: Uη ≥ Lη.

The prior work by Allen and Rehbeck (2022) also studies latent complementarity

and provides bounds for the fraction of the population for whom the two goods

are complements with cross-sectional data. They exploit an exclusion restriction

and an independence assumption between the covariates and unobserved terms. My

method complements their approach by considering panel data setting and using

intertemporal variation over time. I allow covariates to be arbitrarily dependent with

unobserved fixed effects. Moreover, I do not impose exclusion restrictions and can

still partially identify η when covariates of both goods change simultaneously.
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7 Simulation Study

This section will compare the method in this paper with a parametric method via

Monte Carlo simulation. The parametric method imposes distributional assumptions

over εijt and a linear structure over αij, which will be described in detail later. The

simulation results demonstrate that misspecifications in either parametric distribu-

tions or dependence structures between covariates and fixed effects lead to misleading

estimators for the complementarity parameter.

7.1 Point Identification

I study a linear specification of the complementarity Γ(Zi) = Ziγ0, and look at a two

period model T = 2. Section 4.1 has established point identification results under

large support of covariates, so this section focuses on the case where the parameter is

point identified. Section 7.2 and 7.3 present the performance of the point estimator

under longer panels (T ≥ 2) and the set estimator with bounded support of covariates.

I implement the criterion function approach in Shi, Shum, and Song (2018) for

estimation. The criterion function can be developed as follows based on conditional

moment inequalities in Proposition 3:

Ω(θ) =
∑
s 6=t≤T

E
[
‖max{(gs,t(Wist, θ), 0}‖1

]
≥ Ω(θ0) = 0.

where ||x||1 =
∑

j |xj| for a vector x = (x1, ..., xj)′.

Similar to Shi, Shum, and Song (2018), a two-step estimator is developed based

on the above criterion function. The first step estimates the conditional choice proba-

bility Pt({j} | wst) using a nonparametric estimator P̂t({j} | wst). I use a single layer

artificial neural network estimator and the asymptotic property of this estimator has

been established in Chen and White (1999). The neural network estimator is com-

putationally easy to implement and there is a readily used package for the estimator

(Bischl et al. (2016)). Let ĝs,t denote the estimated moment function that replaces

the conditional choice probability Pt({j} | wst) with its estimator P̂t({j} | wst), then

the sample objective function Ω̂N(θ) is constructed as follows:

Ω̂N(θ) =
1

N

N∑
i

∑
s 6=t≤T

‖max{ĝs,t(Wist, θ), 0}‖1.
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The second-step estimator for the parameter is obtained by minimizing the sample

objective function Ω̂N . Since the parameter β0 and γ0 can only be point identified

up to a scale, the first element of the two parameters is normalized as one. This

normalization is also used for other approaches to compare these methods fairly.

To better evaluate the performance of the two-step estimator (Two-Step Est.) in

this paper, I implement a parametric estimator (Parametric Est.) using the method

of simulated moments for comparison. For this parametric estimator, the error terms

εijt are assumed to follow a standard Gumbel distribution, independent across choices

and periods, and also independent of all covariates. I allow the fixed effects αij to

depend on covariates through a linear specification: αij = η0+X̄ ′ijη1+vij, where X̄ij =
1
T

∑
tXijt denote the average covariates and vij ∼ N (0, 1) follows standard normal

distribution and independent of all covariates. This parametric estimator is
√
N

consistent when its assumptions are all correct, while could be inconsistent if either

the parametric distribution or the linear model of the fixed effects is misspecified.

For the coefficient β0, I also evaluate the performance of two other estimators for

comparison that do not allow for the purchase of bundles Γit = −∞. One estimator is

Chamberlain’s conditional fixed-effect logit estimator (FE Logit Est.). This estimator

assumes εijt to follow standard Gumbel distribution while leaving the distribution of

the fixed effects αij unrestricted. The other estimator is the semiparametric estimator

(Semi. Est.) which is developed under the stationarity assumption but assumes

no bundles. Therefore, this estimator only uses conditional choice probabilities of

{A,B,O} to identify the coefficient β0.

Now I describe the simulation setup. Let dx = 2 and dz = 2 denote the dimension

of the covariates Xit and Zi respectively. In each simulation, Xi`t is drawn from

the normal distribution N (0, dx), independently across choices ` ∈ {A,B} and time

t ≤ T . Let the first element of Zi be drawn from N (2, 2) and the second element

from N (0, 1). The true parameters are set as: β0 = γ0 = (1, 1).

I study four different designs of the error terms εijt and fixed effects αij. The first

design considers the correct specification for the parametric estimator: εij follows a

Gumbel distribution and the fixed effects are specified as αij = X̄ ′ijβ0/2 + vij. In

the second design, the error term εit follows a bivariate normal distribution with the

correlation ρ = −0.7. So the parametric distribution of εit is misspecified in this

design. In the third design, I allow the fixed effects αij to depend on the covariates of

the other good in a non-additive form: αij = (X̄ij/2−X̄ik)
′β0∗(1+vij) for j ∈ {A,B}
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and k 6= j ∈ {A,B}. In this design, the parametric estimator assumes a wrong model

for the fixed effects αij. The last design combines the second and third design, which

considers both a misspecified distribution of εit and a misspecified model of αij for

the parametric estimator. The following summarizes the four designs:

• Design 1: correct specification

εijt ∼ Gumbel(0, 1),

αij = X̄ ′ijβ0/2 + vij, where vij ∼ N (0, 1).

• Design 2: misspecified distribution

εit ∼ N2

(
[2;−2], [1 − 0.7;−0.7 1]

)
,

αij = X̄ ′ijβ0/2 + vij, where vij ∼ N (0, 1).

• Design 3: misspecified fixed effects

εijt ∼ Gumbel(0, 1),

αij = (X̄ij/2− X̄ik)
′β0 ∗ (1 + vij), where vij ∼ N (0, 1).

• Design 4: misspecified distribution and misspecified fixed effects

εit ∼ N2

(
[2;−2], [1 − 0.7;−0.7 1]

)
,

αij = (X̄ij/2− X̄ik)
′β0 ∗ (1 + vij), where vij ∼ N (0, 1).

For the above four designs, I compare different approaches by reporting their

root mean-squared error (rMSE) and mean of absolute deviation (MAD). For the

complementarity parameter γ0, I also report the probability of estimating the sign of

substitution patterns incorrectly (Err) of the two estimators, defined as

Err = E| sign(Ziγ0)− sign(Ziγ̂)|.

I study three different sample sizes N = {1000, 2000, 4000} and set the simulation

repetitions to B = 500. The performance of the estimator for γ0 and β0 is displayed

in Table 1 and in Table 2, respectively.

Table 1 compares the performance of the two-step estimator with the parametric
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estimator for the complementarity parameter γ0. The parametric estimator performs

better only when its assumptions are correctly specified (design 1), but has a worse

performance under misspecifications (designs 2-4) especially when both the paramet-

ric distribution and the model of fixed effects are misspecified. The two-step estimator

has uniform performance in all four designs, showing its advantage of performing ro-

bustly under different designs of parametric distributions and models of fixed effects.

Moreover, as the sample size increases, the deviation and bias of the two-step esti-

mator both shrink significantly. However, the bias of the parametric estimator does

not decrease as the sample increases in designs 2-4, which shows the inconsistency of

this estimator under misspecifications.

Table 2 compares the performance of the two-step estimator with three other

estimators described before for the coefficient β0 under the four designs. Similarly,

the two-step estimator performs uniformly better than the other three estimators in

designs 2-4, and the difference becomes more significant as the sample size increases.

To summarize, the results in Table 1 and Table 2 demonstrate the advantage of

the two-step estimator in performing robustly with respect to different parametric

distributions or specifications of dependence structures between covariates and fixed

effects.
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Table 1: Performance Comparisons for γ̂

N Design
Two-Step Est. Parametric Est.

Err SD rMSE MAD Err SD rMSE MAD

1000

design 1 0.025 0.263 0.315 0.267 0.007 0.101 0.101 0.079

design 2 0.026 0.309 0.341 0.278 0.058 0.344 0.741 0.663

design 3 0.023 0.287 0.306 0.251 0.083 0.288 1.019 0.977

design 4 0.025 0.329 0.332 0.264 0.126 0.681 1.764 1.628

2000

design 1 0.022 0.258 0.281 0.229 0.005 0.067 0.067 0.054

design 2 0.022 0.286 0.294 0.235 0.060 0.266 0.719 0.670

design 3 0.022 0.295 0.298 0.234 0.085 0.213 1.021 0.998

design 4 0.021 0.282 0.286 0.226 0.137 0.580 1.875 1.783

4000

design 1 0.018 0.219 0.232 0.188 0.003 0.044 0.044 0.035

design 2 0.021 0.270 0.270 0.223 0.060 0.195 0.700 0.672

design 3 0.017 0.226 0.227 0.179 0.084 0.149 0.983 0.972

design 4 0.020 0.250 0.271 0.218 0.141 0.437 1.873 1.822

Table 2: Performance Comparisons for β̂

Estimators with bundles Estimators assuming no bundles

N Design
Two-Step Est. Parametric Est. FE Logit Est. Semi. Est.
rMSE MAD rMSE MAD rMSE MAD rMSE MAD

1000

design 1 0.126 0.101 0.072 0.056 0.165 0.130 0.155 0.131

design 2 0.125 0.101 0.432 0.389 0.243 0.187 0.161 0.134

design 3 0.128 0.100 0.304 0.279 0.168 0.131 0.149 0.124

design 4 0.121 0.095 0.647 0.593 0.256 0.200 0.171 0.143

2000

design 1 0.093 0.073 0.051 0.040 0.117 0.092 0.114 0.092

design 2 0.095 0.065 0.114 0.095 0.166 0.122 0.105 0.072

design 3 0.094 0.076 0.300 0.286 0.128 0.101 0.115 0.092

design 4 0.099 0.079 0.612 0.581 0.205 0.167 0.132 0.109

4000

design 1 0.071 0.057 0.034 0.027 0.080 0.062 0.079 0.061

design 2 0.075 0.060 0.385 0.368 0.157 0.135 0.091 0.072

design 3 0.070 0.048 0.203 0.198 0.076 0.050 0.075 0.045

design 4 0.077 0.063 0.606 0.588 0.168 0.144 0.104 0.085
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7.2 Longer Panels T ≥ 2

This section studies the performance of the point estimator but considers longer panels

T = {2, 3, 4}. I compare the two-step estimator with the parametric estimator as well

as two other estimators for β0 described in the paper. I study the same simulation

setup for covariates and the same four DGP designs for fixed effects and error terms.

The sample size is N = 1000 and the simulation repetition is B = 500.

Table 3 and Table 4 compare the performance of the two-step estimator with other

estimators for the complementarity parameter γ0 and the utility coefficient β0 under

longer panels. The performance of the two-step estimator improves when the length

of panels increases and the performance is robust in all designs. The parametric

estimator performs better with longer panels, but it still can have a large bias when

there is any misspecification (designs 2-4). The two-step estimator outperforms other

estimators in designs 2-4 regardless of the length of periods and keeps the advantage

of performing more robustly.

Table 3: Performance Comparisons for γ̂ (longer panel)

T Design
Two-Step Est Parametric Est

Err SD rMSE MAD Err SD rMSE MAD

T = 2

design 1 0.025 0.263 0.315 0.267 0.007 0.101 0.101 0.079

design 2 0.026 0.309 0.341 0.278 0.058 0.344 0.741 0.663

design 3 0.023 0.287 0.306 0.251 0.083 0.288 1.019 0.977

design 4 0.025 0.329 0.332 0.264 0.126 0.681 1.764 1.628

T = 3

design 1 0.018 0.204 0.233 0.187 0.006 0.079 0.079 0.063

design 2 0.022 0.291 0.293 0.238 0.063 0.311 0.782 0.721

design 3 0.018 0.233 0.233 0.187 0.056 0.232 0.674 0.634

design 4 0.021 0.284 0.286 0.229 0.115 0.527 1.533 1.440

T = 4

design 1 0.018 0.181 0.231 0.193 0.006 0.075 0.075 0.059

design 2 0.021 0.287 0.290 0.230 0.066 0.282 0.796 0.746

design 3 0.015 0.194 0.200 0.162 0.041 0.179 0.487 0.453

design 4 0.017 0.229 0.229 0.181 0.108 0.385 1.379 1.324
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Table 4: Performance Comparisons for β̂ (longer panel)

Estimators with bundles Estimators assuming no bundles

T Design
Two-Step Est. Parametric Est. FE Logit Est. Semi. Est.
rMSE MAD rMSE MAD rMSE MAD rMSE MAD

T = 2

design 1 0.126 0.101 0.072 0.056 0.165 0.130 0.155 0.131

design 2 0.125 0.101 0.432 0.389 0.243 0.187 0.161 0.134

design 3 0.128 0.100 0.304 0.279 0.168 0.131 0.149 0.124

design 4 0.121 0.095 0.647 0.593 0.256 0.200 0.171 0.143

T = 3

design 1 0.087 0.069 0.052 0.042 0.107 0.084 0.130 0.108

design 2 0.083 0.064 0.385 0.360 0.178 0.149 0.123 0.103

design 3 0.090 0.070 0.214 0.198 0.106 0.084 0.124 0.102

design 4 0.085 0.069 0.539 0.509 0.189 0.157 0.131 0.109

T = 4

design 1 0.081 0.066 0.045 0.036 0.079 0.062 0.117 0.095

design 2 0.069 0.050 0.081 0.058 0.145 0.125 0.095 0.060

design 3 0.075 0.060 0.165 0.153 0.080 0.064 0.116 0.096

design 4 0.074 0.059 0.488 0.465 0.163 0.138 0.119 0.097
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7.3 Partial Identification

This section examines the performance of set estimators when covariates have bounded

support. The parametric approach is also implemented for comparison, which achieves

point identification regardless of the support of covariates.

The simulation setup is similar except the support of covariates is bounded. Let

dx = 2 and dz = 2 denote the dimension of the covariates Xi`t and Zi respectively,

for ` ∈ {A,B}. In each simulation, XiAt is drawn from the uniform distribution

U [−3, 3] and XiBt is drawn from the normal distribution N (0, 2). The covariates

are independent across choices ` ∈ {A,B} and time t ≤ T . Let the first element of

Zi be drawn from the uniform distribution U [0, 4], and the second element is drawn

from U [−2, 2]. The true parameters are set as β0 = γ0 = (1, 1). We study the same

four designs of fixed effects and error terms as before. Consider that the sample size

is N ∈ {1000, 4000}, the length of periods is T = 2, and the repetition number is

B = 500.

The parameter is only partially identified since the support of XiAt and Zi is

bounded. Following Chernozhukov, Hong, and Tamer (2007), the set estimator for

the identified set ΘI is proposed as

Θ̂ĉN =
{
θ ∈ Θ : Ω̂N(θ) ≤ inf

θ∈Θ
Ω̂N(θ) + ĉN/aN

}
,

where aN denotes the uniform convergence rate of the sample objective function Ω̂N ,

which is aN ≈ N1/4 when the neural network estimator is used in the first step; ĉN

is chosen as 10−4 log(N) so it satisfies ĉN/aN → 0. I divide the interval [−5, 5] into

k = 100 grids and apply grid search to find the identified set.

Let (β̂l, β̂u) and (γ̂l, γ̂u) denote the lower bound and upper bound for β0 and γ0,

respectively. Let β̂par, γ̂par denote the parametric estimator for β0 and γ0. To compare

the two approaches, I still report the standard deviation (SD), root mean-squared

error (rMSE), and mean of absolute deviation (MAD).

Table 5 and 6 compare the performance of the lower/upper bounds in this paper

with the parametric approach. The comparison between the two approaches keeps

similar patterns as in the point identification section. Although the performance of

the set estimator is slightly worse compared to the point estimator with large support,

it still performs more robustly than the parametric estimator concerning specifications

of fixed effects or distributional assumptions of error terms. The parametric approach
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has a smaller bias under correct specification (design 1), but can be severely biased

with misspecifications (design 2-4). The set estimator proposed in this paper performs

robustly with different specifications of fixed effects and error terms.

Table 5: Performance Comparisons for γ̂

N Design
Two-Step Est. Parametric Est.

γ̂l γ̂u γ̂par
SD rMSE MAD SD rMSE MAD SD rMSE MAD

1000

design 1 0.309 0.353 0.285 0.318 0.483 0.410 0.083 0.083 0.067

design 2 0.365 0.367 0.292 0.397 0.492 0.394 0.389 0.946 0.864

design 3 0.376 0.510 0.418 0.406 0.739 0.635 0.241 1.061 1.032

design 4 0.408 0.538 0.419 0.456 0.766 0.634 0.690 2.670 2.580

4000

design 1 0.205 0.208 0.170 0.211 0.334 0.283 0.043 0.043 0.034

design 2 0.221 0.239 0.189 0.231 0.459 0.403 0.197 0.745 0.718

design 3 0.212 0.242 0.195 0.233 0.538 0.488 0.149 1.047 1.036

design 4 0.204 0.290 0.238 0.232 0.588 0.543 0.409 2.767 2.734

Table 6: Performance Comparisons for β̂

N Design
Two-Step Est. Parametric Est.

β̂l β̂u β̂par
SD rMSE MAD SD rMSE MAD SD rMSE MAD

1000

design 1 0.121 0.129 0.107 0.132 0.132 0.107 0.068 0.069 0.054

design 2 0.125 0.136 0.113 0.131 0.131 0.106 0.160 0.186 0.148

design 3 0.125 0.129 0.104 0.133 0.138 0.110 0.138 0.460 0.438

design 4 0.127 0.131 0.109 0.134 0.136 0.109 0.253 0.627 0.573

4000

design 1 0.071 0.090 0.077 0.079 0.081 0.069 0.032 0.032 0.026

design 2 0.074 0.094 0.079 0.077 0.077 0.066 0.085 0.092 0.070

design 3 0.069 0.079 0.067 0.076 0.086 0.073 0.069 0.424 0.419

design 4 0.072 0.084 0.071 0.079 0.086 0.072 0.132 0.596 0.581
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8 Conclusion

This paper uses a panel multinomial choice model with bundles to study the sub-

stitution and complementarity relationship between goods. The model imposes no

parametric assumptions on the idiosyncratic error terms and allows for endogeneity by

admitting flexible dependence structures between observed covariates and unobserved

fixed effects. I provide testable implications for the substitution and complementarity

relationship, and derive the sharp identification set for the model parameters.

The primary identification strategy is to derive identifying restrictions on unknown

parameters through intertemporal variation in conditional choice probabilities that

are identified from data. I construct conditional moment inequalities to characterize

the identified set for estimation and inference. The method in the paper is shown

via Monte Carlo simulations to perform more robustly than the parametric method

concerning different specifications of fixed effects and distributions of error terms. In

the extension, the paper allows for unobserved heterogeneity in the complementarity

and establishes partial identification results. In the Appendix, I also study the case

of more than two goods, a class of nonseparable utility functions, as well as cross-

sectional models.

This paper focuses on a static panel multinomial choice model where consumers’

utility of goods only depends on characteristics in the same periods. It would be inter-

esting to investigate how to identify the complementarity relationship in a dynamic

model, where consumers’ choices may also depend on past choices. The analysis

would be more complicated as one has to disentangle the effect from previous choices

and the current complementarity. In addition, it could also be worthwhile to explore

how to identify the complementarity and utility coefficients with heterogeneous and

unknown choice sets.
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A Appendix: Proofs

In the following proofs, I will suppress the covariate Zi and use Γ0 to denote the

incremental utility Γ(Zi).

A.1 Proof of Lemma 1

Proof. Lemma 1 contains two results to be shown: Γ0 ≥ 0 implies sAB ≤ 0, and

Γ0 ≤ 0 implies sAB ≥ 0. I will show the proof for the first result, and the same idea

can be applied to the second case.

Suppose that the complementarity term is positive Γ0 ≥ 0, and I need to show

sAB ≤ 0. From the definition of sAB, proving sAB ≤ 0 is equivalent to showing that if

pBs > pBt, then Pr(Yis ∈ DA | pBs, pBt, x̃) ≤ Pr(Yit ∈ DA | pBs, pBt, x̃). The covariate

x̃ is suppressed in this proof as it is fixed over time and it will not affect variation in

conditional choice probabilities.

Let β0,p ≤ 0 denote the coefficient for price p`t. Let vi`t = αi` + εi`t for ` ∈ {A,B}.
The utility for good B can be expressed as uiBt = pBtβ0,p + viBt and for good A is

uiAt = viAt since all other covariates of good A are suppressed.

Let VDA
(pBt) denote the collection of v = (vA, vB) such that there exists one choice

in DA = {A,AB} being chosen conditional on price pBt. The set VDA
(pBt) includes

two cases: either choice A or choice AB has higher utility than all other options not

in DA. The set VDA
(pBt) can be expressed as follows:

VDA
(pBt) =

{
v | vA ≥ pBtβ0,p + vB, vA ≥ 0

}
≡ V1(pBt)

∪
{
v | vA + Γ0 ≥ 0, vA + pBtβ0,p + vB + Γ0 ≥ 0

}
≡ V2(pBt).

The demand for good A given fixed effects and prices can be expressed as

Pr(Yit ∈ DA | αi, pBs, pBt) = Pr(vit ∈ VDA
(pBt) | αi, pBs, pBt).

Under Assumption 3 (stationarity), the conditional distribution of vit is station-

arity over time since the conditional distribution of εit is the same over time and the
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fixed effects αi are constant. Therefore, a larger set would imply a higher conditional

probability as follows:

VDA
(pBs) ⊆ VDA

(pBt) =⇒ Pr(Yis ∈ DA | αi, pBs, pBt) ≤ Pr(Yit ∈ DA | αi, pBs, pBt).

By taking expectations with respect to the fixed effect αi conditional on covariates,

the above condition leads to

VDA
(pBs) ⊆ VDA

(pBt) =⇒ Pr(Yis ∈ DA | pBs, pBt) ≤ Pr(Yit ∈ DA | pBs, pBt).

Proving Lemma 1 is equivalent to showing that a higher price pBs > pBt implies

VDA
(pBs) ⊆ VDA

(pBt). I will prove VDA
(pBs) ⊆ VDA

(pBt) by showing that for any

element v ∈ VDA
(pBs), it satisfies v ∈ VDA

(pBt). The proof will proceed by discussing

two cases: v ∈ V1(pBs) and v ∈ V2(pBs).

Case 1: v ∈ V1(pBs). If v satisfies vA ≥ pBtβ0,p + vB then v ∈ V1(pBt). Otherwise

v should satisfy

vA < pBtβ0,p + vB, vA ≥ 0.

Since Γ0 ≥ 0, it has the following implication:

vA + Γ0 ≥ 0, (vA + Γ0) + pBtβ0,p + vB > (vA + Γ0) + vA ≥ 0.

Therefore we know that v ∈ V2(pBt) ⊆ VDA
(pBt).

Case 2: v ∈ V2(pBs). According to the definition of the set V2(pBs), it decreases

with pBs given β0,p ≤ 0. Since pBs > pBt, it implies v ∈ V2(pBs) ⊆ V2(pBt).

I have shown that for any element v ∈ VDA
(pBs), it satisfies v ∈ VDA

(pBt) when

pBs > pBt. Therefore, we can conclude that Γ0 ≥ 0 implies sAB ≤ 0.

A.2 Proof of Proposition 2

Proof. Let vi`t = αi` + εi`t for ` ∈ {A,B} denote the sum of fixed effects and error

term. For any set K ⊂ C, let VK(xt) denote the collection of v = (vA, vB) such that

there exists one choice in K ⊂ C being chosen given Xit = xt. Let vAB = vA+vB +Γ0

and vO = 0 denote the error term for bundle AB and the outside option respectively.
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The set VK(xt) can be expressed as

VK(xt) =
{
v | ∃j ∈ K s.t. δjt + vj ≥ δkt + vk for all k ∈ Kc

}
,

where δ`t = x′`tβ0 for ` ∈ {A,B}, δABt = δAt + δBt, and δOt = 0.

The conditional probability that there exists one choice in set K being chosen can

be expressed as follows:

Pr(Yit ∈ K | αi, xs, xt) = Pr
(
vit ∈ VK(xt) | αi, xs, xt

)
.

Under Assumption 3 (stationarity), the conditional distribution of vit is station-

arity over time for any s 6= t since fixed effects αi are constant over time. Therefore,

a larger set implies a larger conditional choice probability over time:

VK(xs) ⊆ VK(xt) =⇒ Pr(Yis ∈ K | αi, xs, xt) ≤ Pr(Yit ∈ K | αi, xs, xt). (2)

Next we will establish sufficient conditions on the parameter θ0 for the set rela-

tionship VK(xs) ⊆ VK(xt), which would imply a decline in the conditional probability

of the set K over time. Then by contraposition, identifying restrictions for θ0 can be

derived when there is an increase in choice probabilities over time. Proposition 2 com-

prises three parts of identifying restrictions, and the proof for each part is presented

one by one.

Part 1: comparisons of the conditional probability of choice j ∈ C over time.

According to the definition of the set Vj(xt), it increases with respect to δjt − δkt for

k 6= j. So when the covariate index of choice j compared to all other choices decreases

over time, it implies the following set relationship:

δjs − δks ≤ δjt − δkt ∀k 6= j =⇒ Vj(xs) ⊆ Vj(xt).

Note that the above relationship also holds for choice AB with δABt = δAt + δBt.

Plugging into the notation ∆s,tδj = δjs − δjt and condition (2), it has the following

implication:

∆s,tδj −∆s,tδk ≤ 0 ∀k 6= j =⇒ Pr(Yis = {j} | αi, xs, xt) ≤ Pr(Yit = {j} | αi, xs, xt).

By contraposition and taking expectation over αi conditional on (xs, xt), it yields
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the first identifying restriction in Proposition 2:

Ps({j} | xs, xt) > Pt({j} | xs, xt) =⇒ ∃ k 6= j s.t. ∆s,tδj −∆s,tδk > 0.

Part 2: comparisons of the demand for good ` ∈ {A,B} over time. I take good

A as an example to show the proof. The set VDA
(xt) can be expressed as the union

of two sets as follows: the set of choice A and the set of choice AB generating higher

utility than other choices not in DA,

VDA
(xt) =

{
v | δAt + vA ≥ δBt + vB, δAt + vA ≥ 0

}
≡ V1(xt)

∪
{
v | δAt + vA + Γ0 ≥ 0, δAt + δBt + vAB ≥ 0

}
≡ V2(xt).

To prove condition (ID2) in Proposition 2, I look at the contrapositive statement

of (ID2) given as follows:{
∆s,tδA ≤ 0, ∆s,t(δA + sign(Γ0)δB) ≤ 0

}
∨
{
|Γ0| ≤ −∆s,tδA} =⇒ VDA

(xs) ⊆ VDA
(xt).

(3)

If the above condition is shown, then similarly condition (ID2) is proved by contra-

position and taking conditional expectation over αi. The conditions on the parameter

θ0 in (3) also depends on the sign of the complementarity Γ0. I focus on the case

Γ0 > 0 and the idea applies to the case Γ0 ≤ 0.

When Γ0 > 0, the restriction on the parameter θ0 in (3) includes two parts:

C1 =
{

∆s,tδA ≤ 0,∆s,t(δA + δB) ≤ 0
}

and C2 = {Γ0 ≤ −∆s,tδA}. Now I need to

show that one of the two conditions C1 ∨ C2 implies VDA
(xs) ⊆ VDA

(xt). It can be

proved by showing that any element v belonging to VDA
(xs) also belongs to VDA

(xt)

under either condition C1 or C2. For any element v ∈ VDA
(xs), I discuss two cases:

v ∈ V1(xs) and v ∈ V2(xs).

Case 1 : v ∈ V1(xs). If v satisfies δAt + vA ≥ δBt + vB, then v ∈ V1(xt) since either

condition C1 or C2 both implies δAs ≤ δAt. Otherwise v should satisfy the following

inequality:

δBt + vB > δAt + vA ≥ δAs + vA ≥ 0.

Since the complementarity is nonnegative Γ0 ≥ 0, the following conditions hold:

δAt + vA + Γ0 ≥ 0, (δAt + vA) + (δBt + vB) + Γ0 ≥ 0.
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Therefore, v ∈ V2(xt) ⊆ VDA
(xt).

Case 2 : v ∈ V2(xs). I first consider that condition C1 holds. According to the

definition of the set V2(xs), the set increases when the indices δAs and δAs + δBs both

increase. Condition C1 implies an increase in the covariate indices δAt ≥ δAs and

δAt + δBt ≥ δAs + δBs, so v ∈ V2(xt).

Now consider that condition C2 holds. For any element v ∈ V2(xs), condition C2

implies the following condition:

δAt + vA ≥ δAs + Γ0 + vA ≥ 0.

If v also satisfies the second condition in V2(xt) which is δAt+δBt+vA+vB+Γ0 ≥ 0,

then v belongs to the set V2(xt): v ∈ V2(xt). Otherwise v should satisfy

δBt + vB < −(δAt + vA + Γ0) ≤ δAt + vA.

It implies that v ∈ V1(xt). I have shown whenever v ∈ VDA
(xs), it satisfies

v ∈ VDA
(xt) under either condition C1 or C2.

Part 3: comparisons of the sum of conditional probabilities of two choices over

time. Condition (ID3) includes two parts of identifying restrictions: one is the sum of

the conditional probabilities of buying a single good and the other is the conditional

probabilities of buying the bundle and the outside option. I focus on the condition

using the sum of the conditional probabilities of buying a single good.

Similarly, I look at the contrapositive statement of condition (ID3) in Proposition

2. Let C3 = {min
{

∆s,tδA,−∆s,tδB
}
≤ Γ0} and C4 = {∆s,t(δA − δB) ≤ 0}, the

contraposition of condition (ID3) is given as

C3 ∨ C4 =⇒ VA(xs) ⊆ V{A,AB,O}(xt),

where the set VA(xt) and VA,AB,O(xt) is given as

VA(xt) = {v | δAt + vA ≥ 0, δAt + vA ≥ δBt + vB, δBt + vB + Γ0 ≤ 0},

VA,AB,O(xt) = {v | δAt + vA ≥ δBt + vB or δAt + vA + Γ0 ≥ 0 or 0 ≥ δBt + vB}.

First consider that condition C3 holds, which has the following implications:

δAs ≤ δAt + Γ0 or δBs + Γ0 ≥ δBt.
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For any element v ∈ VA(xs), condition C3 implies

δAt + vA + Γ0 ≥ 0 or 0 ≥ δBt + vB.

Therefore it is concluded that v ∈ VA,AB,O(xt).

When condition C4 holds, it implies that δAs− δBs ≤ δAt− δBt. Then the element

v satisfying v ∈ VA(xs) also satisfies δAt + vA ≥ δBt + vB, we can conclude that v ∈
VA,AB,O(xt). The analysis for the sum of the conditional probabilities of purchasing

the bundle and the outside option is similar, so I omit the analysis here.

A.3 Proof of Theorem 1

Proof. To prove sharpness, I need to show that for any parameter θ in the identified

set ΘI , I can construct a data generating process such that it matches observed choice

probabilities and satisfies assumptions.

Let Xi = (Xit)
T
t=1 and Yi = (Yit)

T
t=1 collect covariates and choice variables at all

periods. Let FY |X(j1, j2, ..., jT | x) denote joint choice probabilities of choosing jt ∈ C
at all periods t ≤ T given Xi = x, which are identified from data. I set fixed effects

to be zero αi = 0 and focus on constructing the conditional distribution of the error

term εi | x.

The first requirement of sharpness is that the constructed distribution of error

terms can match the observed choice probabilities FY |X(j1, j2, ..., jT | x) according to

the utility function of all choices:

FY |X(j1, j2, ..., jT | x) = Pr(uijtt ≥ uiktt ∀kt 6= jt, ∀t ≤ T | x). (4)

The left hand term represents observed choice probabilities in data, and the right

hand term represents choice probabilities generated from the model which depend on

the constructed distribution of the error term.

The second requirement is that the constructed distribution of the error term

satisfies Assumption 3 (stationarity), which is equivalent to the following condition

given (Xis, Xit) = (xs, xt):

Pr(εis ∈ K | xs, xt) = Pr(εit ∈ K | xs, xt) for any set K. (5)
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To construct a conditional distribution of the error term to satisfy the above two

requirements, the first step is to construct choice sets. Since only consumers’ choices

are observed in data, I will define choice sets that determine observed choices and

construct the conditional distribution of εi | x over those sets. The distribution over

other sets does not matter for observed variables and can be constructed arbitrarily

as long as it satisfies the assumptions. Let EK(xt) denote the collection of ε = (εA, εB)

such that there exists one choice in the set K being selected given Xit = xt, defined

as

EK(xt) = {ε | ∃j ∈ K s.t. δjt + εj ≥ δkt + εk ∀k ∈ Kc | xt},

where εAB = εA + εB + Γ0 and εO = 0. When K = {j} is a singleton, Ej(xt) is the set

of error terms such that choice j is selected given xt.

The four choice sets {Ej(xt)}j∈C form partitions of the space of εit conditional on

xt. The conditional probability of selecting choice j can be represented as follows:

Pr(Yit = j | xt) = Pr(εit ∈ Ej(xt) | xt).

For any jt ∈ C, the first requirement (condition (4)) is satisfied when we construct

the conditional distribution of εi | x on the set Ej(xt) as follows:

FY |X(j1, j2, ..., jT | x) = Pr(εi1 ∈ Ej1(x1), ..., εiT ∈ EjT (xT ) | x). (6)

The joint distribution of εi | x over choice sets Ej(xt) is pinned down to match

observed choice probabilities. Now I only need to verify that the stationarity as-

sumption in condition (5) can be satisfied. To show it, I will construct a marginal

distribution of εit | (xs, xt) over smaller sets such that it is stationary over any two

periods s 6= t and it is consistent with the distribution over choice sets derived from

equation (6).

Equation (6) restricts the marginal distribution of εit | (xs, xt) on the choice set

Ej(xt) at each t ≤ T . The choice set Ej(xt) depends on xt so it changes over time when

the covariate xt changes. It is difficult to compare the two distributions defined over

different sets at different periods and verify the stationarity assumption. To tackle

this difficulty, I construct the marginal distribution of εis | (xs, xt) and εit | (xs, xt)

on the intersection of the two choice sets Ej(xs) and Ej(xt), then their distributions

are defined over the same set. Let Jj,k(xs, xt) denote the intersection of the two sets

43



Ej(xs) and Ej(xt), defined as follows:

Jj,k(xs, xt) = Ej(xs) ∩ Ek(xt).

Let Pt(j | xs, xt) = Pr(Yit = j | xs, xt) denote the marginal probability of choos-

ing j at time t which is identified from data. The requirements for the conditional

distribution of εit | (xs, xt) over the set Jj,k(xs, xt) are equivalent to the following

conditions: for any j, k ∈ C and any s 6= t,

Pr(εis ∈ Jj,k(xs, xt) | xs, xt) = Pr(εit ∈ Jj,k(xs, xt) | xs, xt),∑
k

Pr(εis ∈ Jj,k(xs, xt) | xs, xt) = Ps(j | xs, xt),∑
j

Pr(εit ∈ Jj,k(xs, xt) | xs, xt) = Pt(k | xs, xt).

(7)

The first equation guarantees the conditional stationarity assumption (Assump-

tion 3), and the other two equations ensure that the constructed marginal distribution

of εit | (xs, xt) is consistent with observed choice probabilities.

Now I need to show that there exists nonnegative probabilities of εit | (xs, xt)

over the set Jj,k(xs, xt) such that condition (7) holds. Let rj,k(xs, xt) ≥ 0 denote the

conditional probability over the set Jj,k:

rj,k(xs, xt) = Pr(εis ∈ Jj,k(xs, xt) | xs, xt) = Pr(εit ∈ Jj,k(xs, xt) | xs, xt).

The stationarity assumption is satisfied since the probability rj,k(xs, xt) is time

invariant. For the following analysis, I will suppress the covariate (xs, xt) for the

conditional probabilities rj,k(xs, xt) and Pt(j | xs, xt) to simplify notation. I only

need to construct nonnegative probabilities rj,k ≥ 0 such that the last two conditions

in (7) hold for all j, k ∈ C: ∑
k

rj,k = Ps(j),∑
j

rj,k = Pt(k).
(8)

This proof focuses on the case Γ0 ≥ 0 and the idea applies to the case Γ0 <

0. The construction of rj,k depends on the relationship between covariate indices

and the complementarity term {∆s,tδA,∆s,tδB,∆s,tδAB,Γ0}, since their relationship
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determines the relationship between choice sets. I discuss the following cases to show

the construction of rj,k.

Case 1: ∆s,tδA ≥ ∆s,tδAB ≥ 0 ≥ ∆s,tδB, and Γ0 ≥ min{∆s,tδA,−∆s,tδB}. From

the proof for Proposition 2 in A.2, the relationship between covariate indices and the

complementarity term implies the following set inclusion relationship:

EJ(xt) ⊆ EJ(xs) for any J ∈ {{A}, {A,AB}, {A,AB,O}},

EB(xt) ⊆ E{B,AB,O}(xs).

According to the definition of Jj,k, the above set inclusion relationship implies

that the following sets are empty:

Jk1,A = Jk2,AB = JB,O = JA,B = ∅ for k1 6= A, k2 = {B,O}.

Given the relationship between covariate indices and the complementarity term,

the contraposition of conditions (ID1)-(ID3) in Proposition 2 are equivalent to the

following inequalities:

Pt(A) ≤ Ps(A),

Pt(B) ≥ Ps(B),

Pt(A) + Pt(AB) ≤ Ps(A) + Ps(AB),

Pt(B) + Ps(A) ≤ 1.

(9)

Now I need to show that when the above restrictions (9) hold, there exists non-

negative probabilities rj,k ≥ 0 on nonempty sets Jj,k such that (8) holds.

The probabilities on nonempty sets Jj,k are constructed as follows:

rO,B = min{Pt(B)− Ps(B), Ps(O)}, rAB,B = Pt(B)− Ps(B)− rO,B,

rO,O = Ps(O)− PO,B, rA,AB = min{Ps(A)− Pt(A), Pt(AB)},

rA,O = Ps(A)− Pt(A)− rAB,A, rAB,AB = Pt(AB)− rAB,A.
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The last probability rAB,O can be constructed as follows:

rAB,O =



1− Pt(B)− Ps(A) if Ps(A) ≥ Pt({A,AB}), Pt(B) ≥ Ps({B,O}),

Ps(AB) if Ps(A) ≥ Pt({A,AB}), Pt(B) ≤ Ps({B,O}),

Pt(O) if Ps(A) ≤ Pt({A,AB}), Pt(B) ≥ Ps({B,O}),

Ps({A,AB})− Pt({A,AB}) if Ps(A) ≤ Pt({A,AB}), Pt(B) ≤ Ps({B,O}).

It can be verified that all constructed probabilities are nonnegative by their def-

inition, and the probability rAB,O is nonnegative under condition (9). The idea of

constructing nonnegative probabilities rj,k for the following cases is similar.

Case 2: ∆s,tδA ≥ ∆s,tδAB ≥ 0 ≥ ∆s,tδB and Γ0 < min{∆s,tδA,−∆s,tδB}. It

implies following set inclusion relationship:

Jk1,A = Jk2,AB = Jk3,O = ∅ for k1 6= A, k2 = {B,O}, k3 = {B,AB}.

Given the relationship between covariate indices and the complementarity term,

the contraposition of conditions in Proposition 2 implies the following inequalities:

Pt(A) ≤ Ps(A),

Pt(B) ≥ Ps(B),

Pt(A) + Pt(AB) ≤ Ps(A) + Ps(AB),

Pt(B) + Pt(AB) ≥ Ps(B) + Ps(AB).

(10)

The probability rj,k can be constructed as follows:

rB,B = Ps(B), rA,A = Pt(A),

rO,O = min{Pt(O), Ps(O)}, rO,B = Ps(O)− rO,O, rA,O = Pt(O)− rO,O,

rAB,AB = min{Pt(AB), Ps(AB)}, rAB,B = Ps(AB)− rAB,AB, rA,AB = Pt(AB)− rAB,AB.

By construction, the above probabilities are all nonnegative. The last probability

is determined as rA,B = Ps(A) + Pt(B) − 1 + rAB,AB + rO,O, and it can be shown to

be nonnegative rA,B ≥ 0 when condition (10) holds.

The analysis for remaining cases are similar except exchanging the order of A and

B or exchanging AB and O.
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A.4 Proof of Theorem 2

Proof. I first show the proof for point identification of the coefficient β0 and the

idea is similar to the parameter γ0. The first step is to show that for any candidate

b 6= kβ0, there exists some value of the covariate such that the sign of the covariate

index ∆X ′i`β for good ` ∈ {A,B} is different under the true parameter β0 and the

candidate b. I take good A as an example to illustrate the idea.

From Assumption 5, the conditional density of ∆XkA
iA is positive everywhere. Let

∆X̃iA = ∆XiA \ ∆XkA
iA denote the remaining covariates in ∆XiA and β̃0 denote its

coefficient. Consider that the coefficient of ∆XkA
iA is positive βkA0 > 0, and the analysis

applies to the case βkA0 < 0. For any candidate b, I discuss three cases: bkA < 0,

bkA = 0, and bkA > 0.

Case 1: bkA < 0. When the covariate ∆XkA
iA takes a large positive value ∆XkA

iA =

∆xkAA → +∞ and all other covariates take a bounded number in their support, it

implies that ∆x′Aβ0 > 0 and ∆x′Ab < 0 since the true coefficient and the candidate

coefficient have different signs βkA0 > 0 and bkA < 0.

Case 2: bkA = 0. For any value ∆XiA = ∆xA, the value of ∆x′Ab is either positive

or nonpositive. First consider that ∆x′Ab > 0 is positive. When ∆xkAA takes a large

negative number ∆xkAA → −∞ such that ∆x′Aβ0 < 0, which has a different sign from

∆x′Ab. Similarly, if ∆x′Ab ≤ 0, there exists ∆xkAA → +∞ such that ∆x′Aβ0 > 0.

Case 3: bkA > 0. Assumption 5 says that the support of the covariate ∆XiA is

not contained in any proper linear subspace, so there exists ∆X̃iA = ∆x̃A such that

∆x̃′Aβ̃0/β
kA
0 6= ∆x̃′Ab̃/b

kA . Suppose that ∆x̃′Aβ̃0/β
kA
0 −∆x̃′Ab̃/b

kA = k > 0, then when

the covariate takes the value ∆XkA
iA = −∆x̃′Ab̃/b

kA − ε with 0 < ε < k. The sign of

the covariate index satisfies: ∆x′Aβ0 = βkA0 (k − ε) > 0 and ∆x′Ab = −bkAε < 0. The

construction is similar when k < 0.

I have shown that there exists some value of the covariate such that the sign of the

index ∆X ′i`β is different under the true parameter β0 and the candidate parameter

b. From Assumption 4, there exists at least one choice such that the conditional

probability of this choice changes in strictly different directions under β0 and b so

β0 is identified. For example, if ∆x′`β0 > 0 and ∆x′`b ≤ 0 for ` ∈ {A,B}, then

the conditional probability of choosing AB strictly increases under β0 and decreases

under b. The analysis for other cases is similar.

Now we look at the proof for the parameter γ0, which is similar to the above

analysis. The sign of variation in covariate index ∆x′`β0 is identified for ` ∈ {A,B}
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since β0 is point identified. For any γ 6= kγ0, we know that there exists some value of

covariate Zi = z such that the sign of the complementarity z′γ0 6= 0 is different from

the sign of z′γ under the large support assumption of Zi (Assumption 6). Then, the

conditional demand of good A or good B will change in strictly different directions

under γ0 and γ given some value of covariates. For example, consider that the covari-

ate of good A is fixed over time and the covariate of good B increases ∆x′Bβ0 > 0.

If z′γ0 > 0 and z′γ ≤ 0, then the demand for good A will strictly increase under γ0

but decrease under γ by Condition ID2 in Proposition 2. The opposite holds for the

other case z′γ0 < 0 and z′γ ≥ 0. Therefore, the parameter γ0 is point identified.

A.5 Proof of Proposition 4

Proof. The conditional demand for one good can be expressed as a mixture of two

groups: one group is people to whom the two goods are complements Γit ≥ 0 and

the other is people to whom the two goods are substitutes Γit < 0. Therefore, the

demand for good A (or B) conditional on the covariate and the fixed effects is given

as follows:

Pr(Yit ∈ DA | αi, xs, xt) = Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) Pr(Γit ≥ 0 | αi)+

Pr(Yit ∈ DA | αi, xs, xt,Γit < 0)[1− Pr(Γit ≥ 0 | αi)].

The above equation holds since Assumption 8 (conditional independence) implies

Pr(Γit ≥ 0 | αi, xs, xt) = Pr(Γit ≥ 0 | αi).
The main strategy is to use intertemporal variation in the conditional demand

for good A to bound the probability Pr(Γit ≥ 0 | αi). It can be shown that when

(xs, xt) ∈ X 1
s,t, the conditional demand Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) increases at

time s compared to time t, which will be proven later. The variation in the conditional

demand given Γit < 0 can be bounded as [−1, 1] since it is the difference between two

probabilities. Therefore, the variation in the aggregate demand for good A can be

bounded as: for any (xs, xt) ∈ X 1
s,t,

Pr(Yis ∈ DA | αi, xs, xt)− Pr(Yit ∈ DA | αi, xs, xt) ≥ 0 + (−1) ∗ [1− Pr(Γit ≥ 0 | αi)].

By taking expectation over the fixed effect αi conditional on the covariate, the
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probability η = Pr(Γit ≥ 0) can be bounded above as follows: for any (xs, xt) ∈ X 1
s,t,

η ≤ Ps(DA | xs, xt)− Pt(DA | xs, xt) + 1.

Since the probability η does not depend on covariates and it is stationarity over

time under Assumption 7, it can be bounded by taking the infimum over all values of

the covariates and any two periods. Moreover, the variation in the demand for good

B can also be exploited to bound the probability η similarly. Therefore, the upper

bound for η can be established as follows:

η ≤ inf
(xs,xt)∈X 1

s,t,`∈{A,B},(s,t)≤T

{
Ps(D` | xs, xt)− Pt(D` | xs, xt)

}
+ 1 = Uη.

Now I need to show that the conditional probability Pr(Yit ∈ DA | αi, xs, xt,Γit ≥
0) increases at time s compared to time t when the covariate satisfies (xs, xt) ∈ X 1

s,t.

Let vit = εit + αi, and let VΓ
DA

(xt) denote the collection of (v,Γ ≥ 0) such that either

choice A or AB is chosen:

VΓ
DA

(xt) ={(v,Γ ≥ 0) | δAt + vA ≥ δBt + vB, δAt + vA ≥ 0} ≡ VΓ
1 (xt),

∪{(v,Γ ≥ 0) | δAt + vA + Γ ≥ 0, δAt + vA + δBt + vB + Γ ≥ 0} ≡ VΓ
2 (xt).

The conditional demand Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) can be expressed as the

conditional probability of the set VΓ
DA

(xt):

Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) = Pr((vit,Γit) ∈ VΓ
DA

(xt) | αi, xs, xt,Γit ≥ 0).

Assumption 7 implies that the distribution (vit,Γit) conditional on (αi, Xis, Xit,Γit)

is stationarity over time. Then I only need to show VΓ
DA

(xt) ⊆ VΓ
DA

(xs) when the co-

variate satisfies (xs, xt) ∈ X 1
s,t, which has the following implication:

VΓ
DA

(xt) ⊆ VΓ
DA

(xs) =⇒

Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) ≤ Pr(Yis ∈ DA | αi, xs, xt,Γit ≥ 0).

To prove VΓ
DA

(xt) ⊆ VΓ
DA

(xs), I will show that for any element (v,Γ) ∈ VΓ
DA

(xt),

it also satisfies (v,Γ) ∈ VΓ
DA

(xs) when (xs, xt) ∈ X 1
s,t. As shown before, any (xs, xt) ∈

X 1
s,t satisfies δAt ≥ 0, δBt ≥ 0. I discuss two cases to prove the statement: (v,Γ) ∈
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VΓ
1 (xt) and (v,Γ) ∈ VΓ

2 (xt).

Case 1: (v,Γ) ∈ VΓ
2 (xt). According to the definition of the set VΓ

2 (xt), it increases

with respect to the covariate index for good A and good B. Therefore, we know that

(v,Γ) ∈ VΓ
2 (xs) since the covariate indices for goods A and B both increase when

(xs, xt) ∈ X 1
s,t.

Case 2: (v,Γ) ∈ VΓ
1 (xt). If v satisfies δAs+vA ≥ δBs+vB, it implies (v,Γ) ∈ VΓ

1 (xs)

since the covariate index for good A increases at time s relative to time t. Otherwise

v should satisfy δAs + vA < δBs + vB. Also the complementarity is nonnegative Γ ≥ 0,

which implies the following conditions:

δAs + vA + Γ ≥ δAt + vA ≥ 0, δAs + vA + Γ + δBs + vB ≥ 2(δAs + vA) ≥ 0.

The above condition implies (v,Γ) ∈ VΓ
2 (xs) ⊆ VΓ

DA
(xs).

In summary, I have shown that VΓ
DA

(xt) ⊆ VΓ
DA

(xs) for any (xs, xt) ∈ X 1
s,t, implying

that the conditional probability Pr(Yit ∈ DA | αi, xs, xt,Γit ≥ 0) increases at time s

compared to time t. The proof of the lower bound for η can be established similarly,

so it is omitted here.

B Appendix: More Extensions

B.1 Extension: More Than Two Goods

Although there are numerous applications where we are interested in the substitution

relationship between two goods, it would be interesting to explore how the approach

can be extended to accommodate more than two goods. In this section, I allow

any finite number of goods L = {A,B, ..., J}. The letter J is used to represent the

last good, and any other letter can be used to incorporate additional goods. Let Γibt

denote the incremental utility from choosing bundle b compared to the sum of utilities

of a single good ` ∈ L in b:

Γibt = uibt −
∑
`∈b

ui`t.

I consider the same assumption for Γibt as Assumption 1 where the incremental
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utility only depends on observed covariate Zi:

Γibt = Γb(Zi).

Function Γb is allowed to vary across bundles, which permits heterogeneous incre-

mental utilities for different bundles. In this Appendix, the covariate Zi is suppressed

so I use Γb to represent the incremental utility for bundle b.

The analysis becomes more complex when generalizing beyond two goods, posing

several challenges. The feasible choices increase exponentially when allowing for all

possible combinations of goods. The incremental utilities of all bundles compared to

buying a single good could be heterogeneous across bundles, and the sign of them can

be either positive or negative. The demand for a good depends on covariate indices

of all goods and the incremental utilities of all possible bundles. In this scenario,

the relationship between the demand for a good and the incremental utilities of all

possible bundles as well as all covariate indices becomes intractable.

Due to those challenges, I consider two assumptions to simplify the analysis with

more than two goods. The first condition requires that consumers can purchase at

most two goods in one period. By making this assumption, bundles of more than

two goods are eliminated, which reduces the number of feasible choices available to

consumers. This assumption may be justifiable as consumers could be subject to

budget or inventory limitations that prevent them from purchasing more than two

goods simultaneously. Under this condition, consumers’ choice set is simplified as

C = {O, j, j1j2 ∀j ∈ L, j1 6= j2 ∈ L}. Second, I consider that we focus on the

substitution relationship between goods A and B, and allow its incremental utility

ΓAB to be positive or negative. The incremental utility of all other bundles is assumed

to be negative: Γj1j2 ≤ 0 for j1 6= j2 and j1j2 6= AB. This condition still allows for

the potential purchase of bundle j1j2, while restricting only the sign of its incremental

utility.

Under the above two assumptions, the following proposition characterizes the

identifying restrictions for (β0,ΓAB).

Proposition 5. Under Assumption 1-3, the following conditions hold: for any s 6=
t ≤ T ,
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• comparisons of CCP of good j ∈ L:

Ps({j} | xs, xt) > Pt({j} | xs, xt) =⇒ {∆s,tδj > 0} ∨ {∃k 6= j ∈ L, ∆s,tδk < 0};

• comparisons of CCP of bundle j1j2 for j1 6= j2 ∈ L:

Ps({j1j2} | xs, xt) >Pt({j1j2} | xs, xt) =⇒{
∃j ∈ {j1, j2}, ∆s,tδj > 0

}
∨ {∃k /∈ {j1, j2}, ∆s,tδk < 0};

• comparisons of CCP of D` = {`, AB} for ` ∈ {A,B}:

Ps(D` | xs,xt) > Pt(D` | xs, xt) =⇒ {∆s,tδ` > 0} ∨ {∆s,t(δ` + sign(ΓAB)δ`−1) > 0}

∨ {∃k ∈ {C, .., J}, ∆s,t(δ`−1 − δk) > 0} ∨ {∃k ∈ {C, .., J}, ∆s,tδk < 0},

where `−1 ∈ {A,B} and `−1 6= `.

Proposition 5 extends the results for two goods to allow for any finite number of

goods. It still derives identifying restrictions on the utility coefficient β0 and the incre-

mental utility ΓAB from intertemporal variation in conditional choice probabilities.

The identifying conditions are more complex due to the larger number of feasible

choices to consumers and the need to consider variation in covariate indices of all

goods.

The first part exploits variation in buying a single good to identify the utility

coefficient β0. When we observe an increase in the probability of buying a single

good, e.g., good A, it can be inferred that either the covariate index of good A

increases or that of some other goods decreases. Similarly, the second part looks at

variation in purchasing a bundle over time. If the probability of selecting a bundle

(such as AB) increases, it indicates either an increase in the covariate index of a good

(either A or B) within that bundle or a decrease in a good outside of the bundle.

The last part in Proposition 5 uses variation in the conditional probability of

choosing the set DA = {A,AB} (or DB) to infer the sign of the incremental util-

ity ΓAB. To convey the idea, I first consider that the covariates of all other goods

{C, ..., J} are fixed. If goods A and B both improve but the probability of purchasing

{A,AB} declines, it suggests that some individuals switch to buying only good B in-

stead of bundle AB and the incremental utility is negative ΓAB < 0. When covariates
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of other goods {C, ..., J} can also change, then an increase in the probability of se-

lecting {A,AB} could be due to a decline in the covariate indices of goods {C, ..., J}
so that individuals switch to selecting {A,AB}. This explains another restriction

∆s,tδk < 0 for some k ∈ {C, ..., J} in the last part of Proposition 5.

B.2 Extension: Cross-Sectional Models

In the paper, I studied the multinomial choice models with panel data. This sec-

tion briefly describes how the identification strategy can be applied to cross-sectional

multinomial choice models.

Now consider the model with cross-sectional data. The utility uij of consumer i

from selecting good j ∈ {A,B} depends on the covariate Xij and the error term εij

in the following form:

uij = X ′ijβ0 + εij.

The utility of the outside option is normalized to zero: uiO = 0. The incremental

utility ΓiAB from selecting bundle AB is given as

ΓiAB = uiAB − uiA − uiB.

I consider the same assumption as in Assumption 1, which assumes that the

incremental utility only depends on the covariate Zi:

ΓiAB = Γ(Zi).

The covariate Zi is suppressed, so we use Γ0 to represent Γ(Zi). With cross-

sectional data, the stationarity condition in Assumption 3 needs to be adjusted. Let

εi = (εiA, εiB) and Xi = (XiA, XiB). I assume that the error term εi is independent of

Xi. This assumption imposes an independence condition between the error term εi

and covariate Xi but still allows the error term to be freely correlated across choices.

Under this assumption, a similar identification result as Proposition 2 can be de-

rived by exploiting variation in covariates. Given two different values of the covariate

Xi = x and Xi = x̃, let δj = x′jβ0 and δ̃j = x̃′jβ0. The following conditions hold for

any (x, x̃):
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1. comparisons of CCP of choice j ∈ C:

P ({j} | x) > Pt({j} | x̃) =⇒ ∃k 6= j s.t. δj − δ̃j > δk − δ̃k;

2. comparisons of the demand for good ` ∈ {A,B}:

P
(
{`, AB} | x

)
> P

(
{`, AB} | x̃

)
=⇒

{δ` − δ̃` > 0} ∨
{

(δ` − δ̃` + sign(Γ0)(δ`−1 − δ̃`−1) > 0, |Γ0| > −(δ` − δ̃`)
}
,

where `−1 ∈ {A,B} and `−1 6= `;

3. comparisons of the sum of CCP of two choices:

P ({AB} | x) + Pt({O} | x̃) > 1 =⇒{
Γ0 > −min{δA − δ̃A, δB − δ̃B}

}
∧ {δA − δ̃A + δB − δ̃B > 0};

P ({A} | x) + P ({B} | x̃) > 1 =⇒{
Γ0 < min{δA − δ̃A,−(δB − δ̃B)}

}
∧ {δA − δ̃A − (δB − δ̃B) > 0}.

B.3 Extension: Nonseparable Utility Functions

The paper focused on an additive and separable utility function which is commonly

used in the literature on discrete choice models. This section studies a more general

class of utility functions that can be nonseparable between observed covariates and

unobserved heterogeneity. This class of utility functions can allow flexible interactions

between observed covariates, fixed effects, and error terms.

Consider that there are two goods {A,B}. The utility uijt for consumer i from

selecting good j ∈ {A,B} at time t still depends on the three crucial components:

covariate Xijt, unobserved agent-level fixed effects αij, and unobserved error terms

εijt. Different from Model (1), this section studies a more general utility function as

follows: for j ∈ {A,B},
uijt = u(X ′ijtβ0, αij, εijt). (11)

The function u can be potentially unknown to researchers and could be nonsep-

arable between the three components. The only restriction on the function u is a

monotonicity condition stated in Assumption 9. This class of utility functions can
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admit richer preferences of consumers.

The utility of the outside option O is normalized as zero:

uiOt = 0.

We are still interested in the incremental utility Γit from consuming bundle AB

compared to choosing a single good:

Γit = uiABt − uiAt − uiBt.

I consider the same assumption for the complementarity which can only depend

on observed covariate Zi as in Assumption 1. The covariate Zi is suppressed so the

complementarity Γ0 is written as a constant.

The utility function in (11) has also been studied by Gao and Li (2020), while

their paper focuses on the identification of the coefficient β0. My paper allows for

purchasing bundle AB and provides identification results for the complementarity

Γ(z) between the two goods. Following Gao and Li (2020), I assume a monotonicity

condition on the utility function to the covariate index X ′ijtβ0.

Assumption 9. (Monotonicity) The utility u(δ, α, ε) is weakly increasing in the index

δ for every realization (α, ε), i.e.

for any (α, ε), u(δ̃, α, ε) ≥ u(δ, α, ε) if δ̃ ≥ δ.

Assumption 9 only requires monotonicity with respect to the covariate index but

imposes no restriction on unobserved fixed effects and error terms. The additively sep-

arable utility function in Equation (1) is nested in Assumption 9. The nonseparable

utility function not only admits flexible interactions between observed characteristics

and unobserved heterogeneity but also allows for nonlinear functions of the covariate

Xijt such as exponential functions or higher-order polynomial functions.

Recall that D` = {`, AB} for ` ∈ {A,B}. The next proposition characterizes

identifying restrictions for the parameter θ0 = (β0,Γ0).

Proposition 6. Under Assumptions 1-3 & 9, the following conditions for any (xs, xt)

and s 6= t ≤ T ,
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(1) comparisons of CCP of choice j ∈ C,

Ps({j} | xs, xt) >Pt({j} | xs, xt) =⇒{
(−1)1[j∈DA]∆s,tδA < 0

}
∨
{

(−1)1[j∈DB ]∆s,tδB < 0
}

;

(2) comparisons of the demand for good ` ∈ {A,B}:

Ps(D` | xs, xt) > Pt(D` |xs, xt) =⇒

{∆s,tδ` > 0} ∨
{

sign(Γ0)∆s,tδ`−1 > 0
}
,

where `−1 ∈ {A,B} and `−1 6= `.

Similar to Proposition 2, Proposition 6 derives identifying conditions for the pa-

rameter θ0 using intertemporal variation in conditional choice probabilities over any

two periods. The main difference is that the additively separable utility function in

(1) imposes restrictions on both the direction and the degree of how covariate in-

dices affect agents’ utility uijt, while the nonseparable function in (11) only assumes

a monotonicity condition but is flexible about the degree of how covariate indices

affect the utility. Therefore, the identified set in Proposition 6 is wider compared

to the result in Proposition 2, while the results in Proposition 6 are robust to the

specifications of utility functions. The proof of Proposition 6 is similar to Appendix

A.2 so it is omitted here.

In Proposition 6, the first condition can identify the coefficient β0 by using the

conditional probability of a single choice. The intuition is as follows: if the condi-

tional probability of selecting choice j increases, then it must be that either good j

becomes better (covariate index increases) or other goods become worse (covariate

index decreases).

The second condition in Proposition 6 identifies the sign of Γ0 using variation in

conditional demand over time. Similar to condition (ID2) in Proposition 2, the idea

is to exploit the relationship between covariate indices and demand under different

complementarity relationships. When two goods are complements, an increase in the

covariate index of good A will drive up the demand for good B since people will

switch to choosing the bundle AB. Then, if a decline in the demand for good B is

observed, it can be inferred that two goods are substitutes Γ0 ≤ 0. We are unable to

bound the value of the complementarity since the effect of the covariate index on the
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utility is unknown with this nonseparable utility function.

B.4 Discussion on the Utility Specification

In this section, we discuss the connection between the utility specification in this

paper and the conventional discrete choice model. In particular, take a three-good

version of Pakes and Porter (2022)’s model:

uiAt = X ′iAtβ0 + αiA + εiA,

uiBt = X ′iBtβ0 + αiB + εiB,

uiCt = X ′iCtβ0 + αiC + εiCt,

uiOt = 0.

(12)

One could rename C = AB and interpret the bundle AB as an additional good.

In my model, I instead directly specify the utility of AB by linking it with the

utility of individual goods, given by

uiAt = X ′iAtβ0 + αiA + εiA,

uiBt = X ′iBtβ0 + αiB + εiB,

uiABt = uiAt + uiBt + Γ(Zi),

uiOt = 0.

(13)

The above specification assumes that the incremental utility from selecting both

goods compared to the sum of utilities of individual goods only depends on observed

characteristic Zi. This specification can be viewed as imposing the following condition

on (12):

X ′iABtβ0 + αiAB + εiABt = (XiAt +XiBt)
′β0 + αiA + αiB + εiAt + εiBt + Γ(Zi). (14)

Notice that the complementarity Γ(Zi) from consuming both goods is assumed to

only depend on observed characteristics, but could be sourced from any combination

of the covariate index, the fixed effects, and the unobserved shock.5 For example, sup-

pose εijt represents the unobserved quality of the product. The quality contribution

5In this model, we can only identify the total complementarity arising from all three components
since dividing the complementarity term arbitrarily into the three parts will not affect consumers’
choices.
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to the utility of the bundle, εiABt, might not equal εiAt + εiBt, the sum of the qual-

ity contributions to uA and to uB. This accounts for substitution/complementarity

coming from the unobserved quality. However, the difference, εiABt − εiAt − εiBt, is

assumed to only depend on observables. This structure enables us to test and identify

the substitution and complementarity relationship between goods.

Condition (14) assumes that the complementarity only depends on observed char-

acteristics. A more general specification is to incorporate unobserved heterogeneity

in the complmentarity, given by

X ′iABtβ0 + αiAB + εiABt = (XiAt +XiBt)
′β0 + αiA + αiB + εiAt + εiBt + Γit,

where Γit is an unobserved individual-specific error term. Thus, it allows for het-

erogeneous complementarity relationships across individuals that are not captured

by observed characteristics. Section 6 explores this specification but only weaker

identification results can be obtained.

B.5 Testing Substitutability

In certain applications, we may think that two goods are substitutes and want to test

the substitutability relationship between goods. The idea of testing the substitutabil-

ity is similar to the analysis in Section 3. Testing the substitutability is equivalent

to testing Γ0 ≤ 0 (covariate Zi is suppressed). Then, the null hypothesis H ′0 and

alternative hypothesis H ′1 are given as follows:

H ′0 : Γ0 ≤ 0 H ′1 : Γ0 > 0.

The main idea is still to construct moment inequalities that only depend on ob-

served variables under the null hypothesis H ′0. To construct moment restrictions, we

will exploit the relationship between the demand and covariate indices of the two

goods under the substitution relationship between goods. The intuition is described

as follows. If the two goods are substitutes (under H ′0), an improvement in good A

and a decline in good B should result in an increase in demand for good A and a

decrease in demand for good B. If instead a decrease in demand for good A or an

increase in demand for good B is observed, it can be deduced that the two goods are

complements and the null hypothesis H ′0 is not supported.
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To characterize testable implications, the first step is to infer the sign of covariate

indices of the two goods such that good A becomes better and good B becomes worse.

Let ξ2
s,t(xs, xt) be an indicator for increasing probabilities of all choices {A,AB,O},

defined as

ξ2
s,t(xs, xt) = 1

{
Ps({j} | xs, xt)− Pt({j} | xs, xt) ≥ 0, ∀j ∈ {A,AB,O}

}
.

When an increase in conditional probabilities of all choices j ∈ {A,AB,O} is

observed, we can infer that

ξ2
s,t(xs, xt) = 1 =⇒ ∆s,tδA ≥ 0, ∆s,tδB ≤ 0.

Since there is an increase in probabilities of all choices except good B, it can only

be deduced that the covariate index of good A increases and that of good B decreases.

Given the above sign of covariate indices of the two goods, the conditional demand

for good A should increase and the demand for good B should decrease under the null

hypothesis of the two goods being substitutes. When an increase in demand for good

A or a decline in demand for good B is observed, we can conclude that two goods are

complements and reject the null hypothesis. The following proposition characterizes

the testable implications of the null hypothesis H ′0.

Proposition 7. Under Assumptions 1-3, the following conditional moment inequal-

ities hold under the null hypothesis H ′0:E
[
ξ2
s,t(xs, xt)

(
1{Yis ∈ DA} − 1{Yit ∈ DA}

) ∣∣ xs, xt] ≥ 0;

E
[
ξ2
s,t(xs, xt)

(
1{Yis ∈ DB} − 1{Yit ∈ DB}

) ∣∣ xs, xt] ≤ 0,

for any (xs, xt) and any s 6= t ≤ T .

B.6 Proof of Proposition 5

Proof. The proof is similar to the proof for Proposition 2. We will first derive suffi-

cient conditions for decreased conditional choice probabilities. Then when we observe

increased conditional choice probabilities, identifying restrictions on parameters can

be derived by contraposition.
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Let vijt = αij + εijt denote the sum of fixed effects and error term for j ∈ L. Let

vj1j2t = vj1t + vj2t + Γj1j2 and vO = 0 denote the sum of fixed effects and error term

for bundle j1j2 and the outside option respectively, for j1 6= j2 ∈ L. Given covariate

Xijt = xjt, let δjt = x′jtβ0, δj1j2t = δj1t + δj2t, and δOt = 0.

For any set K ⊂ C, let VK(xt) denote the collection of v = (vA, ..., vJ) such that

there exists one choice in K ⊂ C being chosen given Xit = xt. The set VK(xt) can be

expressed as

VK(xt) =
{
v | ∃j ∈ K s.t. δjt + vj ≥ δkt + vk for all k ∈ Kc

}
,

The conditional probability that there exists one choice in set K being chosen can

be expressed as follows:

Pr(Yit ∈ K | αi, xs, xt) = Pr
(
vit ∈ VK(xt) | αi, xs, xt

)
.

Under Assumption 3 (stationarity), the conditional distribution of vit is station-

arity over time for any s 6= t since the fixed effect αi is constant over time. Therefore,

a larger set implies a larger conditional choice probability over time:

VK(xs) ⊆ VK(xt) =⇒ Pr(Yis ∈ K | αi, xs, xt) ≤ Pr(Yit ∈ K | αi, xs, xt).

I will show sufficient conditions for the above set inclusion relationship, which

implies decreased conditional choice probabilities. Then identifying restrictions can

be derived when increased conditional choice probabilities are observed. Proposition

5 contains three parts of identifying restrictions, and the proof for each part is shown

as follows.

Part 1: comparisons of the conditional probability of choosing good j ∈ L over

time. I look at good A as an example. The set VA(xt) is given as

VA(xt) =
{
v | δAt + vA ≥ 0, δAt + vA − δj1t − vj1 ≥ 0, δj1t + vj1 + ΓAj1 ≤ 0,

δAt + vA − δj1j2t − vj1j2 ≥ 0 for all j1 6= j2 ∈ {B, ..., J}
}
,

Notice that δj1j2t = δj2j1t and vj1j2 = vj2j1 by definition, so switching the order of

the two indexes of a bundle will not make any difference. The set VA(xt) increases

with respect to δAt and decreases with δkt for k ∈ {B, .., J}. Therefore, the following
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set relationship holds:

∆s,tδA ≤ 0, ∆s,tδk ≥ 0 ∀k ∈ {B, .., J} =⇒

Pr(Yis = {A} | αi, xs, xt) ≤ Pr(Yit = {A} | αi, xs, xt).

By contraposition and taking expectation over αi conditional on (xs, xt), it yields

the first identifying restriction in Proposition 5:

Ps({A} | xs, xt) > Pt({A} | xs, xt) =⇒ {∆s,tδA > 0} ∨ {∃k ∈ {B, .., J}, ∆s,tδk < 0}.

Part 2: comparisons of the conditional probability of choosing bundle j1j2 over

time for j1 6= j2 ∈ L. I look at bundle AB as an example. The set VAB(xt) is given

as

VAB(xt) =
{
v | δABt + vAB ≥ 0, δ`t + v` + ΓAB ≥ 0, δABt + vAB − δj1t − vj1 ≥ 0,

δABt + vAB − δj1j2t − vj1j2 ≥ 0, for all ` ∈ {A,B}, j1 ∈ {C, ..., J}, j2 6= j1 ∈ L
}
.

According to the definition of VAB(xt), the set VAB(xt) increases when the covari-

ate index δ`t increases and δk decreases for ` ∈ {A,B} and k ∈ {C, ..., J}. So the

following restrictions hold:

∆s,tδ` ≤ 0,∆s,tδk ≥ 0 ∀` ∈ {A,B}, k ∈ {C, ..., J} =⇒

Pr(Yis = {AB} | αi, xs, xt) ≤ Pr(Yit = {AB} | αi, xs, xt).

By contraposition and taking expectation over αi conditional on (xs, xt), it yields

the second identifying restriction in Proposition 5:

Ps({AB} | xs, xt) >Pt({AB} | xs, xt) =⇒{
∃` ∈ {A,B}, ∆s,tδ` > 0

}
∨ {∃k ∈ {C, ..., J}, ∆s,tδk < 0}.

Part 3: comparisons of the conditional probability of choosing D` = {`, AB} for

` ∈ {A,B} over time. I take the set DA = {A,AB} as an example to show the proof.

We can express the set VDA
(xt) as a union of two sets: choice A or choice AB has

higher utility than other choices not in DA,

VDA
(xt) = V1(xt) ∪ V2(xt),

61



where V1(xt) and V2(xt) are defined as

V1(xt) =
{
v |δAt + vA ≥ 0, δAt + vA ≥ δkt + vk, δj1t + vj1 + ΓAj1 ≤ 0,

δAt + vA ≥ δj1t + δj2t + vj1j2 , for all k, j2 ∈ {B, ..., J}, j1 6= j2 ∈ {C, ..., J}},

and

V2(xt) =
{
v | δABt + vAB ≥ 0, δABt + vAB ≥ δkt + vk, δBt + vB + ΓAB ≥ δj1t + vj1 + ΓAj1 ,

δABt + vAB ≥ δj1j2t + vj1j2 for all k, j2 ∈ {B, ..., J}, j1 6= j2 ∈ {C, ..., J}
}
.

We look at the contrapositive statement of the last condition in Proposition 5:

{∆s,tδA ≤ 0} ∧ {∆s,t(δA + sign(ΓAB)δB) ≤ 0} ∧ {∆s,t(δB − δk) ≤ 0}

∧ {∆s,tδk ≥ 0} ∀k ∈ {C, .., J} =⇒ VDA
(xs) ⊆ VDA

(xt).
(15)

Now we only need to show the above condition to prove the last restriction in

Proposition 5. The conditions on parameters depend on the sign of the complemen-

tarity ΓAB. We show the proof for the case ΓAB ≥ 0, and the idea applies to ΓAB < 0.

When ΓAB ≥ 0, the conditions on parameters in (15) become

{∆s,tδA ≤ 0}∧{∆s,t(δA+δB) ≤ 0}∧{∆s,t(δB−δk) ≤ 0}∧{∆s,tδk ≥ 0} ∀k ∈ {C, .., J}.
(16)

Given the above condition, we want to show that any element v belonging to

VDA
(xs) also belongs to VDA

(xt) which proves VDA
(xs) ⊂ VDA

(xt). For any element

v ∈ VDA
(xs), we discuss two cases: v ∈ V2(xs) and v ∈ V1(xs).

Case 1 : v ∈ V2(xs). By the definition of the set V2(xs), this set increases when

the indices (δAs, δAs + δBs, δBs − δks,−δks) for all k ∈ {C, ..., J} increase. Therefore,

we know that V2(xs) ⊂ V2(xt) under condition (16).

Case 2 : v ∈ V1(xs). If v satisfies δAt+vA ≥ δBt+vB and δAt+vA ≥ δBt+δkt+vBk

for all k ∈ {C, .., J}, then v ∈ V1(xt) under condition (16). Otherwise v should satisfy

one of the following condition:

{δBt + vB > δAt + vA} or {∃k ∈ {C, .., J}, δBt + δkt + vBk > δAt + vA}.

Since we assume that ΓBk ≤ 0 for all k ∈ {C, .., J}, either of the above conditions
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would imply

δBt + vB > δAt + vA ≥ 0, δBt + vB + ΓAB ≥ 0.

Then we can verify that v satisfies all conditions in the set V2(xt) under condition

(16), so that we know v ∈ V2(xt) ⊆ VDA
(xt).

Now we have proved condition (16). By contraposition and taking expectation

over αi leads to the third restriction in Proposition 5:

Ps(DA | xs, xt) > Pt(DA | xs, xt) =⇒ {∆s,tδA > 0} ∨ {∆s,t(δA + δB) > 0}

∨ {∃k ∈ {C, .., J}, ∆s,t(δB − δk) > 0} ∨ {∃k ∈ {C, .., J}, ∆s,tδk < 0}.
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