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Abstract

This paper provides partial identification of various binary choice models

with misreported dependent variables. We propose two distinct approaches by

exploiting different instrumental variables respectively. In the first approach,

the instrument is assumed to only affect the true dependent variable but not

misreporting probabilities. The second approach uses an instrument that in-

fluences misreporting probabilities monotonically while having no effect on the

true dependent variable. Moreover, we derive identification results under addi-

tional restrictions on misreporting, including bounded/monotone misreporting

probabilities. We use simulations to demonstrate the robust performance of

our approaches, and apply the method to study educational attainment.
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1 Introduction

This paper provides partial identification of various binary choice models when the

dependent variable is potentially misreported. Binary choice models have been widely

used in empirical applications such as analyzing participation in social programs, em-

ployment status, and educational attainment. However, many applications rely on

survey data such as the Survey of Income and Program Participation (SIPP) and the

Current Population Survey (CPS), where the binary outcome variable may be misre-

ported or misclassified in survey data due to interviewer or respondent errors. The

problem of misreporting is well documented and several studies show that the mis-

reporting probabilities can be significant. For example, Meyer, Mittag, and George

(2020) show that the probability of misreporting participation in a food stamp pro-

gram can range from 23% in the SIPP to 50% in the CPS.

Numerous studies have examined the bias introduced by misreporting across var-

ious econometric models (Aigner, 1973; Bollinger and David, 1997; Kane, Rouse, and

Staiger, 1999; Davern, Klerman, Ziegenfuss, Lynch, and Greenberg, 2009; Nguimkeu,

Denteh, and Tchernis, 2019). Regarding a binary choice model, Meyer and Mittag

(2017) show that misreporting in the binary dependent variable can lead to signifi-

cant biases in parametric estimators. While misreporting might be pervasive in some

widely used datasets, these datasets may remain valuable sources of information, of-

ten with no appropriate substitute. It is therefore vital to investigate what can still

be learned from the contaminated data.

Tackling misreporting issues can be challenging. Firstly, misreporting in a binary

variable involves non-classical measurement errors, as the measurement error is al-

ways negatively correlated with the true outcome. Moreover, misreporting stem from

unobserved incentives among respondents; for example, people who benefit from a

food stamp program may conceal their participation out of a sense of shame. As such,

misreporting probabilities can depend on observed characteristics in an unknown way.
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This paper introduces two different approaches to identify various binary choice

models with a potentially misreported dependent variable, including parametric, semi-

parametric, and panel binary choice models. With potential misreporting in the de-

pendent variable, conventional approaches for binary choice models do not apply, as

the true dependent variable is not observed, and the conditional expectation of the

true dependent variable is not identified. Our identification strategy derives bounds

for the conditional expectation of the true outcome given covariates, by exploiting

variation in different instruments. Given the bounds, we derive partial identification

for binary choice models by characterizing conditional moment inequalities.

In our first approach, the instrument is assumed to only affect the true outcome

while not influencing misreporting probabilities. In the example of program par-

ticipation, such as job training program, this instrument can be randomly assigned

eligibility for the program. This instrument affects the true participation of the pro-

gram, but it is unlikely to affect misreporting, given its random nature. The second

approach uses an instrument that only affects misreporting probabilities monotoni-

cally, but does not influence the true outcome. Examples of such a variable could

include interview-relevant variables such as an interviewer’s evaluation of respondents’

accuracy or interview styles in survey data, including in-person, phone, or email in-

terviews. Individuals are more likely to provide truthful responses during in-person

interviews than during email interviews.

We derive partial identification results using each instrument. The strategy in-

volves deriving bounds on misreporting probabilities through the variation in each

instrument, thereby establishing bounds on the conditional expectation of the true

outcome. Furthermore, we explore the identifying power of each instrument with

additional restrictions on misreporting, including one-sided misreporting, bounded

misreporting probabilities, and monotone misreporting probabilities. These restric-

tions can potentially provide more informative bounds for misreporting probabilities

3



and thus tighten the bounds for the conditional expectation of the true outcome.

Our approach accommodates various binary choice models and allows for flexi-

ble misreporting processes. The identification strategy is applicable to binary choice

models under full independence and distributional assumptions, or median indepen-

dence restrictions, as well as panel models with conditional homogeneity conditions.

Additionally, we allow for heterogeneous misreporting probabilities, which can depend

on observed characteristics arbitrarily. This flexibility has practical value; for exam-

ple, Bollinger and David (1997, 2001) demonstrate that misreporting probabilities are

correlated with participants’ characteristics such as demographic characteristics and

family income. Furthermore, we do not assume a parametric model for the misreport-

ing process (such as a linear index model) and permit arbitrary dependence between

the true outcome and the misreporting process.

We characterize partial identification for various binary choice models using con-

ditional moment inequalities. Through simulations, we evaluate the finite sample

performance of our method, taking the semiparametric model as an illustrative exam-

ple. For comparison, we also implement the maximum likelihood estimation method

studied in Hausman, Abrevaya, and Scott-Morton (1998), which assumes constant

misreporting probabilities and distributional assumptions. The results demonstrate

the robustness of our approaches with respect to heterogeneous misreporting prob-

abilities and parametric assumptions. As an empirical illustration, we apply our

method to study a binary choice model of educational attainment using the data

from National Longitudinal Surveys in 1976.

In the extension, we examine the joint identifying power of the two instrumental

variables together. The two instruments jointly provide a new channel for identifi-

cation, introducing additional restrictions on misreporting probabilities. This result

leads to more informative bounds on the conditional expectation of the true outcome

compared to intersecting the bounds obtained by using each instrument separately.
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1.1 Related Literature

This paper directly contributes to the line of literature on binary choice models with

misreported dependent variables. See Chen, Hong, and Nekipelov (2011) for a com-

prehensive survey of nonlinear models with measurement errors, including binary

choice models. The literature on binary choice models dates back to Chamberlain

(1980), Manski (1985), and Manski (1987). When the dependent variable is misre-

ported, Hausman, Abrevaya, and Scott-Morton (1998) proposes a modified maximum

likelihood estimator for binary choice models to correct potential misreporting, and

Abrevaya and Hausman (1999) explores a more general linear index model. These

studies assume homogeneous misreporting probabilities, where misreporting rates are

constant regardless of values of covariates. Bollinger and David (1997) allows mis-

reporting rates to depend on covariates in a Probit model, imposing parametric as-

sumptions for both the true binary choice model and misreporting processes. Lewbel

(2000) studies semiparametric identification of binary choice models by using a con-

tinuous instrumental variable that only affects the true outcome but is independent of

misreporting rates. In a more recent paper, Meyer and Mittag (2017) proposes differ-

ent parametric estimators, relying on a parametric model for misreporting processes

or the availability of validation data. Our paper allows for heterogeneous misreport-

ing probabilities, which can depend on covariates in an arbitrary way. Furthermore,

we explore the identifying power of discrete instruments (along with additional re-

strictions on misreporting) and the results are valid even if the instrument only take

two values.

Our work also relates to a large body of literature on various models with mis-

reported regressors. Mahajan (2003) investigates misclassified regressors in binary

choice models. Several studies explore regression models with misreported regressors

under homogeneous misreporting probabilities, including Aigner (1973), Bollinger

(1996), Frazis and Loewenstein (2003). Mahajan (2006), Lewbel (2007), DiTraglia
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and Garcia-Jimeno (2019) allow misreporting probabilities to be covariates dependent

and achieve identification by using a binary instrument for the true regressor. Chen,

Hong, and Tamer (2005), Chen and Hu (2006), and Chen, Hu, and Lewbel (2008)

provide nonparametric identification without instrumental variables. They achieve

identification by exploiting auxiliary data, two samples, and higher-order moments,

respectively. Additionally, Hu (2008) and Molinari (2008) explore misclassification in

a general discrete regressor, and Hu and Schennach (2008) and Hu, Schennach, and

Shiu (2022) extend the study to a continuous regressor with nonclassical measurement

errors. These papers investigate different frameworks with misreported regressors,

and thus their assumptions and identification approaches/results differ from those in

our paper. In a more closely related study, Nguimkeu, Denteh, and Tchernis (2019)

uses two instruments jointly for identification–one for the true regressor and the other

for misreporting. They obtain point identification under one-sided misreporting and

parametric structures on misreporting, while our paper allows for two-sided misre-

porting and nonparametric structures on misreporting processes.

The above literature focuses on homogeneous effects of the regressor given covari-

ates in a regression setting. Numerous papers study heterogeneous treatment effects

with a misreported treatment such as Kreider and Pepper (2007), Kreider, Pepper,

Gundersen, and Jolliffe (2012), Battistin, De Nadai, and Sianesi (2014), Calvi, Lew-

bel, and Tommasi (2017), and Ura (2018). Their approaches either exploit a repeated

measurement, auxiliary administrative data to restrict misreporting errors, or an in-

strumental variable related to the true treatment. This literature also studies different

framework and requires different assumptions to identify heterogeneous treatment ef-

fects from our paper.1 Additionally, these works exploit the instrument for treatment,

while we also explore the identifying power of the instrument for misreporting. More

1Our approach can be potentially applied to study heterogeneous treatment effects, while it still
requires substantial work to explore how to combine our approach with additional assumptions on
the instrument for identification.
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differently, Horowitz and Manski (1995), Kreider and Pepper (2008), and Kreider and

Pepper (2011) study identification with corrupted data under a mixing framework on

data errors.

The rest of this paper is organized as follows. Section 2 presents various binary

choice models and identification approaches using two different instrument along with

additional assumptions on misreporting. Section 3 characterizes conditional moment

inequalities for model parameters, and Section 4 examines the finite sample perfor-

mance via simulations. Section 5 studies the application of educational attainment.

Section 6 explores an extension. We conclude with Section 7.

2 Model and Identification

The analysis studies the identification of various binary choice models with potential

misreporting (or misclassification) in the binary dependent variable. Let Y ∗i ∈ {0, 1}

denote the true binary dependent variable, and Yi ∈ {0, 1} denote the observed

variable which may be subject to misreporting. Let Xi ∈ X denotes a vector of

observed covariate, which is relevant to the true variable Y ∗i and can also affect

misreporting probabilities.

When there is potential misreporting in the variable Y ∗i , the standard identifica-

tion results do not apply, as the true variable Y ∗i is not observed and the conditional

probability p∗(x) := Pr(Y ∗i = 1 | x) is not identified. Our identification strategy

is to establish bounds [L(x), U(x)] for the true conditional choice probability using

observed variables (Xi, Yi) and exploiting the availability of various instruments. The

bounds [L(x), U(x)] will depend only on observed variables, so they are identified

from data. Based on the bounds, we can characterize partial identification for several

binary choice models.

Before introducing the identification approach, we first present various binary
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choice models to illustrate how the bounds on p∗(x) can be exploited to derive partial

identification results in various models.

Example 1 (Parametric Binary Choice Model). Consider the following model for the

true dependent variable Y ∗i :

Y ∗i = 1{εi ≤ X ′iβ0},

where εi is independent of Xi and follow a known distribution: εi | X ∼ Fε(·).2 Under

this structure, the true conditional choice probability is given as

p∗(x) = Fε(x
′β0).

We are interested in identifying and estimating the parameter β0. Given the de-

rived bounds p∗(x) ∈ [L(x), U(x)] in Section 2.1, the identifying condition for the true

parameter β0 is characterized by the following conditional moment inequality: for any

x,

L(x) ≤ Fε(x
′β0) ≤ U(x).

Example 2 (Semiparametric Binary Choice Model). The true dependent variable Y ∗i

is given as:

Y ∗i = 1{εi ≤ X ′iβ0},

where εi satisfies the mean independence assumption E[εi | Xi] = 0, while the dis-

tribution of εi is left unknown. When there is no misreporting in the variable Y ∗i ,

Manski (1985) derives the following identifying condition for β0:

x′β0 ≥ 0 =⇒ p∗(x)− 0.5 ≥ 0,

x′β0 ≤ 0 =⇒ p∗(x)− 0.5 ≤ 0.

However, the probability p∗(x) is no longer identified when the true outcome Y ∗i

is not observed. Our approach dervies bounds for the conditional choice probability

2Common examples for parametric binary choice models include Probit and Logit models.

8



p∗(x) ∈ [L(x), U(x)], yielding the following identifying condition:

x′β0 ≥ 0 =⇒ p∗(x)− 0.5 ≥ 0 =⇒ U(x)− 0.5 ≥ 0,

x′β0 ≤ 0 =⇒ p∗(x)− 0.5 ≤ 0 =⇒ L(x)− 0.5 ≤ 0.

Example 3 (Panel Binary Choice Model). Consider the following binary choice model

for Y ∗it with panel data structure:

Y ∗it = 1{εit + αi ≤ X ′itβ0},

where εit satisfies the conditional stationarity (homogeneity) assumption in Manski

(1987): εit | αi, Xis, Xit ∼ εis | αi, Xis, Xit. Similar to Example 2, given the bounds

on p∗t (x) := Pr(Y ∗it = 1 | Xist = x) ∈ [Lt(x), Ut(x)] where Xist := (Xis, Xit), it has the

following implication:

(xt − xs)′β0 ≥ 0 =⇒ p∗t (x) ≥ p∗s(x) =⇒ Ut(x) ≥ Ls(x),

(xt − xs)′β0 ≤ 0 =⇒ p∗t (x) ≤ p∗s(x) =⇒ Lt(x) ≤ Us(x).

Although our paper mainly focuses on binary choice models, the proposed ap-

proach can be potentially applied to estimate treatment effects with misreported

treatment.

Example 4 (Local Average Treatment Effects). Suppose that we are interested in

estimating the causal effects of the true treatment T ∗ ∈ {0, 1} on the outcome Y . The

true treatment T ∗ can be endogenous, so a binary instrument Z ∈ {0, 1} is used to

address endogeneity. Under the assumptions on instrument Z introduced in Imbens

and Angrist (1994), the local average treatment effect (LATE) is given as

LATE =
E[Y | Z = 1]− E[Y | Z = 0]

E[T ∗ | Z = 1]− E[T ∗ | Z = 0]
.

We consider that the true treatment T ∗ is not observed, but instead we only observe

a reported treatment T ∈ {0, 1} which could be subject to misreporting. Our approach

can bound the true conditional probability p∗(z) := E[T ∗ | Z = z] ∈ [L(z), U(z)], and
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thus can also bound LATE.3

2.1 Identification

We now present our identification approaches to establish bounds on the true con-

ditional probability p∗(x) = Pr(Y ∗i = 1 | x). Let p(x) = Pr(Yi = 1 | x) denote

the reported probability of Yi = 1 given Xi = x, which is identified from the data.

The reported probability p(x) depends on two components: the true probability and

misreporting probabilities. Therefore, it is essential to distinguish between these two

components to identify the true probability from the reported probability.

We introduce two different approaches to identify the true probability p∗(x) by

exploiting different exclusion restrictions. In the first approach, we use a discrete

instrument Zi ∈ Z := {z1, z2, ..., zk} that only affects the true probability p∗(x)

but does not affect misreporting probabilities. The other approach uses a discrete

instrument Wi ∈ W := {w1, w2, ..., wl} that only affects misreporting probabilities

but not the true probability p∗(x). We first study the identifying power of each

individual instrument and then discuss how the two instruments can jointly identify

the true probability p∗(x) in the extension.

For simplicity of notation, we suppress subscript i for random variables in the

following analysis. The following graph describes the relationship among all variables.

Figure 1: Relationship among Variables

Covariate X True Outcome Y ∗ Reported Outcome Y

Instrument Z Instrument W

3The heterogeneous treatment effects framework introduces additional assumptions on instrument
Z with (T ∗, Y ) to address endogeneity. Our approach only imposes assumptions between instruments
(Z,W ) and variables (T ∗, T ) (excluding Y ) to address misreporting issues. Therefore, under this
framework, we need to combine all these assumptions jointly to identify treatment effects with
misreported treatment.
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Figure 1 summarizes our model and main identification strategies. The objective

is to learn the effects of covariate X on the true binary outcome Y ∗, but we only

observe the reported outcome Y which can be possibly misreported. We study the

identifying power of two different instruments respectively: the first one is instrument

Z that only affects the true outcome Y ∗ and the other is instrument W that only

affects the reported outcome Y by affecting misreporting probabilities. Furthermore,

we also study identification results of each instrument with additional assumptions

on misreporting in Section 2.2.

2.1.1 Instrument Z

This section studies the identifying power of instrument Z that only affects the true

choice probability but does not influence misreporting probabilities. Instrument Z

affects the true variable Y ∗ directly so it is a component of the covariate vector X.

Therefore, we divide covariate X into two parts: instrument Z and the remaining

covariates denoted as X̃ = X \ Z ∈ X̃ .

Next we state some assumptions on instrument Z.

Assumption 1 (Exclusion). For any x ∈ X , y ∈ {0, 1},

Pr(Y = 1− y | Y ∗ = y, x) = Pr(Y = 1− y | Y ∗ = y, x̃).

The exclusion restriction requires instrument Z to be independent of misreporting

process, so it only affects the reported probability by shifting the true probability.

When the true outcome is participation in social programs, such as a job training

program, one example of instrument Z could be randomly assigned eligibility for the

program. The random assignment will affect true participation but not influence

misreporting, given its random nature. Studies, e.g., Mahajan (2006), Ura (2018),

and DiTraglia and Garcia-Jimeno (2019), provide more examples of this instrument

in various applications.
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The next assumption is about the extent of misreporting probabilities.

Assumption 2 (Degree of Misreporting). For any x̃ ∈ X̃ ,

Pr(Y = 0 | Y ∗ = 1, x̃) + Pr(Y = 1 | Y ∗ = 0, x̃) ≤ 1.

Assumption 2 is about the degree of misreporting, ensuring that the reported data

is informative for the true probability. It requires that the misreporting errors are

not too large so that the sum of two-sided misreporting probabilities is smaller than

one. This assumption is consistent with empirical evidence in multiple studies such

as Meyer, Mok, and Sullivan (2009) and Meyer, Mittag, and George (2020), which

document that one-sided misreporting probability is usually less than 50% in survey

data. Moreover, our identification analysis only requires the degree of misreporting

to be known, and the analysis is applicable when the sum of two-sided misreporting

rates is larger than one.

Assumption 3 (Boundary Condition). The reported choice probability p(x) satisfies

that: sup
z∈Z

p(x̃, z) > 0 and inf
z∈Z

p(x̃, z) < 1 for any x̃ ∈ X̃ .

Assumption 3 is a boundary condition for the reported probability. This assump-

tion is relatively weak, requiring that the supremum of the reported probability is

bounded away from zero and the infimum of the reported probability is bounded

away from one. It can be satisfied when instrument Z strictly affects the reported

probability and takes on at least two values.

Under the above assumptions, we are ready to establish identification results for

the true probability p∗(x).

Proposition 1. Under Assumptions 1-3, the sharp bounds for p∗(x) are characterized

as p∗(x) ∈ [L1(x), U1(x)] for any x ∈ X , where

L1(x) =
p(x)− pz(x̃)

1− pz(x̃)
, U1(x) =

p(x)

p̄z(x̃)
.

where pz(x̃) := inf
z∈Z

p(x̃, z) and p̄z(x̃) := sup
z∈Z

p(x̃, z).
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Proposition 1 characterizes partial identification for the true probability p∗(x)

using variation in instrument Z. It also establishes sharpness of the results, showings

that the bounds are the best possible given the assumptions and data. According

to the definition of the bounds, we know that L1(x), U1(x) ∈ [0, 1]. The identifying

power of instrument Z depends on the range of the reported probability p(x̃, z) as

one varies z: tighter bounds for the true probability are achieved with a larger range

of the reported probability. A larger variation in the reported probability can yield

smaller bounds for misreporting probabilities, leading to tighter bounds on the true

probability.

When the conditional reported probability can vary from zero to one when in-

strument Z changes, we can infer that there is no misreporting and achieve point

identification as p∗(x) = p(x). The intuition is as follows. When the reported prob-

ability is one (or zero), there are two possibilities: one is that the true conditional

probability is one, and individuals with Y ∗ = 1 all report the truth (or misreport); the

other is that the true probability is zero while individuals with Y ∗ = 0 all misreport

(or report the truth). The possibility that everyone misreports can be rejected by

Assumption 2, which requires that the sum of two-sided misreporting probabilities to

be smaller than one. Therefore, we can conclude that there is no misreporting, and

point identification for the true probability is obtained.

2.1.2 Instrument W

This section introduces an alternative method for identifying the true probability

using instrument W . This instrument is assumed to only affect misreporting prob-

abilities but not the true probability. In addition to covariate X in the true binary

choice model, instrumentW is an additional variable related to misreporting processes

but excluded from the true binary choice model. Our approach does not impose any

parametric models for misreporting processes, allowing instrument W to affect mis-
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reporting probabilities nonparametrically.

The complete set of observed variables are (X,W, Y ) in this section. Let

pW (x,w) = Pr(Y = 1 | x,w) denote the reported probability conditional on

(X,W ) = (x,w). The subscript W in the function pW is used to distinguish it

from the function p(x) = Pr(Y = 1 | x).

The following presents assumptions on instrument W ∈ W .

Assumption 4 (Exclusion).

Pr(Y ∗ = 1 | x,w) = Pr(Y ∗ = 1 | x) = p∗(x),

for any x ∈ X and w ∈ W.

Similar to Assumption 1 for instrument Z, Assumption 4 states a different ex-

clusion restriction, requiring instrument W to be independent of the true dependent

variable Y ∗. Examples for instrument W could include interview-related variables,

such as interviewers assessments of respondents accuracy or different interview styles

like phone interviews and in-person interviews. These variables are unlikely to affect

the true dependent variable but are related to respondents probabilities of reporting

the truth. These variables are unlikely to affect the true dependent variable, but are

relevant to respondents’ probabilities of reporting the truth.

Assumption 5 (Monotonicity). For any x ∈ X , the following conditions hold for

any y ∈ {0, 1} and w1 > w2 ∈ W,

Pr(Y = 1− y | Y ∗ = y, x, w1) ≤ Pr(Y = 1− y | Y ∗ = y, x, w2).

Assumption 5 is the monotonicity condition for instrument W : the misreporting

probabilities are weakly decreasing with respect to the instrument. For instance, when

the instrument is interviewers’ evaluations of respondents’ accuracy, it is natural

that misreporting probabilities are smaller with higher evaluations. In the case of

interview styles, individuals are more likely to report the truth during an in-person
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interview than a phone interview. It is also worth noting that Assumption 5 is a weak

monotonicity condition, as it only requires monotonicity for the average probability

but allows for potential violations in certain populations.

Assumption 6. (1) Degree of Misreporting: for any x ∈ X , w ∈ W,

Pr(Y = 1 | Y ∗ = 0, x, w) + Pr(Y = 0 | Y ∗ = 1, x, w) ≤ 1.

(2) Boundary Condition: the reported probability pW (x,w) is bounded away from zero

and one: 0 < pW (x,w) < 1 for any x ∈ X , w ∈ W.

Assumption 6 is similar to Assumptions 2-3 for instrument Z. The difference

is that all probabilities are also conditional on the additional variable W since the

misreporting probabilities and the reported probability depend on instrument W in

this scenario.

Under the above assumptions, the next proposition establishes identification re-

sults for the true probability p∗(x).

Proposition 2. Under Assumptions 4-6, the true probability p∗(x) can be bounded

as p∗(x) ∈ [L2(x), U2(x)] for any x ∈ X , where

L2(x) = sup
w∈W

{
pW (x,w)− pw(x,w)

1− pw(x,w)

}
, U2(x) = inf

w∈W

{
pW (x,w)

p̄w(x,w)

}
,

where pw(x,w) := inf
w̃≤w

pW (x, w̃) and p̄w(x,w) := sup
w̃≤w

pW (x, w̃). Moreover, the above

bounds are sharp when instrument W is binary.

Proposition 2 derives partial identification by using a distinct instrument that

only monotonically influences misreporting probabilities but not the true probabil-

ity. Furthermore, it demonstrates that this result exhausts all possible informa-

tion when the instrument W is binary. The bounds, as per their definitions, sat-

isfy that L2(x), U2(x) ∈ [0, 1]. Additionally, the results in Proposition 2 imply that

U2(x) ≥ L2(x) for all x, providing testable implications for our assumptions.
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Proposition 2 mainly exploits the exclusion and monotonicity of instrument W .

Under the monotonicity condition, the misreporting probabilities at w can be bounded

above by all upper bounds of misreporting probabilities evaluated at smaller values

w̃ ≤ w. The identifying power of monotonicity is shown within the bracket of the

bounds (L2(x), U2(x)). The exclusion restriction can help tighten the bounds for the

true probability p∗(x) by intersecting all bounds derived from any value of instrument

W , as demonstrated outside the bracket of bounds.

2.2 Additional Restrictions on Misreporting

Our analysis can be also combined with other additional information on misreporting

probabilities to further tighten the bounds for the true probabilities p∗(x). Section

2.2.1-2.2.3 studies one-sided misreporting, bounded misreporting probabilities, as well

as monotone misreporting probabilities.

2.2.1 One-sided Misreporting

This section studies identification of the true probability p∗(x) under one-sided misre-

porting. One-sided misreporting refers to where only one group with the true outcome

Y ∗ = y misreport, while the other group with Y ∗ = 1 − y always report the truth.

This assumption has practical applications and has been used in previous studies,

such as Nguimkeu, Denteh, and Tchernis (2019). In their paper, they investigate the

participation in the food stamp program and provide evidence for a small overreport-

ing probability. The assumption regarding which group has no misreporting depends

on the specific application, and we present results for both cases.

The next proposition provides bounds for the true probability p∗(x) under one-

sided misreporting by using one of the two instruments (Z,W ) respectively.

Proposition 3. (1) Under Assumptions 1-3, the sharp bounds for the true probability
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p∗(x) are characterized as

p∗(x) ∈


[p(x), U1(x)] when Pr(Y = 1 | Y ∗ = 0, x̃) = 0,

[L1(x), p(x)] when Pr(Y = 0 | Y ∗ = 1, x̃) = 0.

(2) Under Assumptions 4-6, the sharp bounds for the true probability p∗(x) are

characterized as

p∗(x) ∈


[

sup
w∈W

pW (x,w), U2(x)

]
when Pr(Y = 1 | Y ∗ = 0, x, w) = 0,[

L2(x), inf
w∈W

pW (x,w)

]
when Pr(Y = 0 | Y ∗ = 1, x, w) = 0.

Proposition 3 provides sharp identification results for p∗(x) under different sce-

narios of one-sided misreporting, using one of the two instruments, respectively. The

one-sided misreporting assumption ensures accurate data from one group and estab-

lishes the misreporting probability to be zero for this group. In comparison to the

results in Proposition 1 and 2, which allow for two-sided misreporting, Proposition

3 consistently provides tighter bounds on p∗(x) with either larger lower bound or

smaller upper bound.4

2.2.2 Bounded Misreporting Probabilities

This section considers that the misreporting probabilities are bounded by known

numbers. This restriction may come from information such as previous studies on

misreporting, auxiliary administrative data, or theoretical models that provide in-

sights into the potential range of misreporting probabilities.

Assumption 7. The misreporting probabilities satisfy the following condition: for

y ∈ {1, 2} and any (x,w),

Pr(Y = 1− y | Y ∗ = y, x, w) ≤ ᾱy,

4When instrument W is available, the one-sided misreporting assumption implies the monotonic-
ity of pW (x,w) in w, and the upper bound U2(x) becomes one. This implication can serve as a
testable implication for the one-sided misreporting assumption.
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where ᾱy ∈ [0, 1] is a known constant.

Assumption 7 may stem from empirical results in other research or auxiliary infor-

mation, such as administrative data from other samples. For simplicity, Assumption

7 adopts uniform bounds for misreporting probabilities regardless of values of (x,w).

Our approach can be also adjusted to allow ᾱy to depend on (x,w). When instru-

ment W is not available, then the above conditional misreporting probability can be

adjusted by only conditioning on the covariate x.

Proposition 4. (1) Under Assumptions 1-3 & 7, the true probability p∗(x) can be

bounded as

p∗(x) ∈

[
p(x)−min

{
p(x̃), ᾱ0

}
1−min

{
p(x̃), ᾱ0

} ,
p(x)

max {p̄(x̃), 1− ᾱ1}

]
;

(2) Under Assumptions 4-6 & 7, the true probability p∗(x) can be bounded as

p∗(x) ∈

[
sup
w∈W

{
pW (x,w)−min

{
pw(x,w), ᾱ0

}
1−min

{
pw(x,w), ᾱ0

} }
, inf
w∈W

{
pW (x,w)

max {p̄w(x,w), 1− ᾱ1}

}]
.

Proposition 4 derives partial identification for p∗(x)through additional bounds on

misreporting probabilities, with the identifying power depending on the value of the

bounds ᾱy. A smaller value of ᾱy results in tighter bounds for p∗(x), and ᾱy = 0

corresponds to no misreporting. It is also possible that this additional restriction

may not provide any information if the value of the bound ᾱy is larger than that

derived by using each instrument.

2.2.3 Monotone Misreporting Probabilities

This section explores monotone misreporting probabilities, where the misreporting

probability of one group is smaller than that of the other group. The direction of

monotonicity depends on specific applications. To illustrate, we study the following

monotonicity on misreporting probabilities.
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Assumption 8. The misreporting probabilities satisfy the following condition: for

any (x,w),

Pr(Y = 1 | Y ∗ = 0, x, w) ≤ Pr(Y = 0 | Y ∗ = 1, x, w).

Assumption 8 says that the misreporting probability for people with Y ∗ = 0 is

smaller than those with Y ∗ = 1. This assumption is applicable for scenarios where

Y ∗ represents participation in social assistance programs or whether one is smoking

or not. It is documented in the literature that people who did not participate in

social program are more likely to report the truth than people who participated.

The direction of the monotonicity can be reversed in some applications, such as Y ∗

represents educational attainment. Our identification methods can accommodate

both cases, where the direction of the monotonicity is required to be known.

Proposition 5. (1) Under Assumptions 1-3 & 8, the true probability p∗(x) can be

bounded as

p∗(x) ∈

[
p(x)−min

{
pz(x̃), 1− p̄z(x̃)

}
1−min

{
pz(x̃), 1− p̄z(x̃)

} ,
p(x)

p̄(x̃)

]
;

(2) Under Assumptions 4-6 & 8, the true probability p∗(x) can be bounded as

p∗(x) ∈

[
sup
w∈W

{
pW (x,w)−min

{
pw(x,w), 1− p̄w(x,w)

}
1−min

{
pw(x,w), 1− p̄w(x,w)

} }
, inf
w∈W

{
pW (x,w)

p̄w(x,w)

}]
.

Proposition 5 shows that Assumption 8 can further increase the lower bound for

p∗(x) with each instrument. The idea is that under the monotone misreporting rates

assumption, the misreporting probability for group Y ∗ = 0 can also be bounded by

the upper bound of the misreporting probability for the other group Y ∗ = 1, yielding

more informative results for the true probability p∗(x). Symmetrically, when assuming

a smaller misreporting rate for group Y ∗ = 1 compared to Y ∗ = 0, the upper bound

for p∗(x) can be tightened.
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3 Conditional Moment Inequalities

Based on previous identification analysis, this section demonstrates how to character-

ize identification for various binary choice models using conditional moment inequali-

ties. We focus on the two binary choice models with cross-sectional data in Examples

1 and 2 to illustrate the idea, and the analysis can be applied to panel binary choice

models.5

3.1 Parametric Binary Choice Model

As shown in Example 1, given the parametric structure of the error term ε, i.e.,

ε | X ∼ Fε(·), the model parameter β0 is characterized by the following restriction:

Lk(x) ≤ Fε(x
′β0) ≤ Uk(x), (1)

where k ∈ {1, 2} depends on the availability of instruments.

When the instrument Z is available (k = 1), plugging into the definition of

(L1(x), U1(x)), the identifying restriction in (1) is equivalent to the following con-

ditional moment inequality:

E[gz,par(Y,X, β0) | x] ≥ 0,

where gz,par(Y,X, β0)) is defined as

gz,par(Y,X, β0)) :=


Y − Fε(X ′β0)p̄Z(X̃)

Fε(X
′β0) + pZ(X̃)(1− Fε(X ′β0))− Y.

Similarly, when the instrument W is available (k = 2), condition (1) is equivalent

to the restriction:

E[gw,par(Y,X,W, β0) | x,w] ≥ 0,

5For panel models, we can follow the same identification strategy to derive bounds for the true
probability p∗t (x) := E[Y ∗t | Xst = x] at each period t. The main distinction is that all variables and
results will be indexed by time period t.
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where gw,par(Y,X,W, β0) is defined as

gw,par(Y,X,W, β0) :=


Y − Fε(X ′β0)p̄W (X,W )

Fε(X
′β0) + pW (X,W )(1− Fε(X ′β0))− Y.

3.2 Semiparametric Binary Choice Model

Under the semiparametric framework in Example 2, the identifying restriction of the

model parameter β0 is characterized as

x′β0 ≥ 0 =⇒ Uk(x)− 0.5 ≥ 0,

x′β0 ≤ 0 =⇒ Lk(x)− 0.5 ≤ 0,

(2)

for k ∈ {1, 2}. To characterize conditional moment inequalities, we first conduct

monotone transformations of the bounds (Lk(x), Uk(x)) by multiplying them by their

respective (positive) denominators. This monotone transformation preserves the sign

of those bounds so it does not affect the identification results.

When instrument Z is available with k = 1, the following condition holds by

multiplying the denominators of (L1(x), U1(x)):

U1(x)− 0.5 ≥ 0⇐⇒ p(x)− 0.5p̄Z(x̃) ≥ 0,

L1(x)− 0.5 ≤ 0⇐⇒ p(x)− 0.5pZ(x̃)− 0.5 ≤ 0.

Then, restriction (2) is equivalent to the following conditional moment restriction:

E[gz,semi(Y,X, β0) | x] ≥ 0,

where gz,semi(Y,X, β0) is defined as

gz,semi(Y,X, β0) :=


X ′β01{X ′β0 ≥ 0}(Y − 0.5p̄Z(X̃)),

X ′β01{X ′β0 ≤ 0}(Y − 0.5pZ(X̃)− 0.5).

When the instrument W is available with k = 2, we can conduct a similar mono-
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tone transformation of (L2(x), U2(x)), yielding the following relationship:

U2(x)− 0.5 ≥ 0⇐⇒ pW (x,w)− 0.5p̄W (x,w) ≥ 0 ∀w,

L2(x)− 0.5 ≤ 0⇐⇒ pW (x,w)− 0.5pW (x,w)− 0.5 ≤ 0 ∀w.

Based on the above relationship, restriction (2) is equivalent to the following

conditional moment restriction:

E[gw,semi(Y,X,W, β0) | x,w] ≥ 0,

where gw,semi(Y,X,W, β0) is defined as

gw,semi(Y,X,W, β0) :=


X ′β01{X ′β0 ≥ 0}(Y − 0.5p̄W (X,W )),

X ′β01{X ′β0 ≤ 0}(Y − 0.5pW (X,W )− 0.5).

For both parametric and semiparametric models, we characterize partial identifi-

cation of the model parameter using conditional moment inequalities. Then, we can

adopt established methods from the literature developed for general conditional mo-

ment inequalities to conduct estimation and inference, such as Chernozhukov, Hong,

and Tamer (2007), Andrews and Shi (2013), and Chernozhukov, Lee, and Rosen

(2013).6

4 Simulation Study

This section examines the finite sample performance of our identification approaches

via Monte Carlo simulations. We focus on the semiparametric binary choice model

presented in Example 2, which allows for flexible misreporting process and does not

require distributional assumption. To better evaluate our approach, we also imple-

ment the maximum likelihood estimation approach proposed in Hausman, Abrevaya,

6The conditional moment inequalities contain nuisance parameters, e.g., p̄Z(x̃) and pZ(x̃), that
can be consistently estimated. The inference methods in the literature, such as Andrews and Shi
(2013) Section 8, allow for preliminary consistent estimation of nuisance parameters.
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and Scott-Morton (1998) for comparison, referred to as the HAS approach. Their

method accounts for potential misreporting, but assumes distributional assumption

on error term and homogeneous (constant) misreporting probabilities. The simula-

tion results demonstrate the robustness of our approach concerning heterogeneous

misreporting probabilities and parametric assumptions.

For our approach, we follow Chernozhukov, Hong, and Tamer (2007) and Andrews

and Shi (2013) to estimate the identified set based on conditional moment inequali-

ties. We first transform conditional moment inequalities into unconditional moment

inequalities using indicator functions of hypercubes in the space of covariates as in-

strumental functions.7 The number of hypercubes is {30, 40, 50} for the sample size

n ∈ {1000, 2000, 4000}. Then the estimated identified set can be computed based on

the criterion function method in Chernozhukov, Hong, and Tamer (2007).

Next, we present the performance of our approach and the HAS method in Haus-

man, Abrevaya, and Scott-Morton (1998) using different instruments.

4.1 Instrument Z

This section studies the identification results using instrument Z. The DGP

is described as follows. Instrument Z is uniformly distributed over the set

{−1,−0.5, 0, 0.5, 1}, X̃ follow a uniform distribution over the interval [−1, 1], and

the full covariate X is given as X = [1; X̃;Z]. The true parameter β0 = [1; 1.5;−1.5]

and the true outcome is generated by Y ∗ = 1 {X ′β0 ≥ ε}. We study two specifications

of the error term ε: a standard normal distribution N (0, 1) and a Cauchy distribution

Cauchy(0, 0.5).

The reported outcome Y is given by Y = M1 · Y ∗ + (1 −M0) · (1 − Y ∗), where

My ∈ {0, 1} denotes the reporting variable and My = 0 represents misreporting for

any y ∈ {0, 1}. We allow for heterogeneous misreporting probabilities, depending on

7See Andrews and Shi (2013) for more choices and discussions of instrumental functions.
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the value of covariate X̃:

Pr(M1 = 0 | x̃) = 0.1− 0.1x̃, Pr(M0 = 0 | x̃) = 0.3 + 0.1x̃.

In this DGP, it is clear that Assumptions 1 and 2 on the exclusion and degrees

of misreporting are satisfied. The sample size is n ∈ {500, 1000, 2000} and repetition

number is B = 300.

To compare the performance of the two methods, we report the root mean-squared

error (rMSE) and median of absolute deviation (MAD) for the lower bound β̂l and

upper bound β̂u in this paper, along with the parametric estimator β̂HAS, which

assumes constant misreporting probabilities and a normal distribution of the error

term. Let βk denote the kth element of the parameter β. We normalize the first

element of the parameter to one for our method: β1
0 = 1.

Table 1: Performance Comparisons for β̂2: Instrument Z

Design
β̂lsemi β̂usemi β̂HAS

rMSE MAD rMSE MAD rMSE MAD

n = 500

Normal 0.482 0.338 0.468 0.338 0.475 0.265

Cauchy 0.518 0.338 0.500 0.338 1.115 0.407

n = 1000

Normal 0.434 0.338 0.408 0.268 0.302 0.245

Cauchy 0.385 0.268 0.356 0.237 0.703 0.349

n = 2000

Normal 0.363 0.338 0.331 0.237 0.242 0.180

Cauchy 0.376 0.268 0.323 0.237 0.438 0.274

Tables 1 and 2 display the performance of the two methods under different speci-

fications of the error term ε and different sample sizes. The results illustrate that our
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Table 2: Performance Comparisons for β̂3: Instrument Z

Design
β̂lsemi β̂usemi β̂HAS

rMSE MAD rMSE MAD rMSE MAD

n = 500

Normal 0.519 0.369 0.527 0.439 0.587 0.563

Cauchy 0.544 0.439 0.566 0.439 0.899 0.573

n = 1000

Normal 0.427 0.338 0.449 0.338 0.602 0.617

Cauchy 0.452 0.338 0.485 0.439 0.640 0.472

n = 2000

Normal 0.376 0.237 0.391 0.338 0.596 0.583

Cauchy 0.351 0.237 0.393 0.338 0.479 0.416

approach uniformly performs well across various error term specifications. When the

distribution of ε is correctly specified, the HAS method shows reasonable performance

but does not necessarily outperform our method, as the constant misreporting prob-

abilities assumption still remains misspecified. Moreover, the HAS estimator exhibits

significant bias when the distributional assumption is also misspecified (under the

Cauchy design), while our approach has robust performance under different designs.

4.2 Instrument W

This section examines the finite sample performance of the identified set using in-

strument W . The DGP is described as follows. Covariate X is given by X = (1; X̃),

where X̃ follows a uniform distribution over [−1, 1]. The true outcome Y ∗ is gener-

ated by Y ∗ = 1{ε ≤ X ′β0}, where the true parameter is β0 = [1; 1.5]. Similarly, we

consider two specifications of error term ε: a standard normal distribution N (0, 1)

and a Cauchy distribution Cauchy(0, 0.5).
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Instrument W is uniformly distributed over the set {1, 2, 3, 4, 5}. The reported

outcome Y is given by Y = M1 ·Y ∗+(1−M0)·(1−Y ∗), where My ∈ {0, 1} and My = 0

denotes misreporting. The misreporting probability Pr(My = 0 | x̃, w) depends on

covariate X̃ and instrument W as follows:

Pr(M1 = 0 | x̃, w) = 0.1− 0.1x̃, Pr(M0 = 0 | x̃, w) =
1

1 + 0.3w2
.

In this specification, it can be verified that the monotonicity condition in Assump-

tion 5 on instrument W and the degree of misreporting probabilities in Assumption

6 are satisfied. The sample size is n ∈ {500, 1000, 2000} and repetition number is

B = 300.

Table 3: Performance Comparisons for β̂2: Instrument W

Design
β̂lsemi β̂usemi β̂HAS

rMSE MAD rMSE MAD rMSE MAD

n = 500

Normal 0.567 0.338 0.561 0.338 2.342 1.735

Cauchy 0.598 0.439 0.587 0.338 2.966 3.500

n = 1000

Normal 0.423 0.237 0.412 0.237 2.244 1.456

Cauchy 0.391 0.237 0.372 0.237 2.739 3.081

n = 2000

Normal 0.363 0.237 0.351 0.167 1.935 1.128

Cauchy 0.341 0.237 0.334 0.237 2.736 3.098

Table 3 displays the performance of β2
0 under different sample sizes and specifi-

cations of ε. The results show that our approach consistently outperforms the HAS

approach across all specifications. The HAS method exhibits a significant bias even

when the distribution of ε is correctly specified, as the range of misreporting proba-

26



bilities (under different values of (x̃, w)) is very large in this DGP and the constant

misreporting probabilities assumption is seriously misspecified. The bias of HAS

method becomes larger when the distributional assumption is also misspecified un-

der the Cauchy design. In summary, the simulation results demonstrate the robust

performance of our two approaches concerning flexible misreporting processes and

distributional assumptions.

5 Empirical Illustration

As an empirical illustration, we apply our methods to analyze educational attainment

using a binary choice model with potential misreporting. The dataset we use is drawn

from the National Longitudinal Surveys in 1976 (NLSY76), which is also used in Card

(1995) to estimate returns to education. This survey data contains 3613 individuals’

self-reported information including educational experiences and family backgrounds.

The objective is to explore how people’s characteristics affect the probability of them

attaining a college degree. However, there may be misreporting in self-reports of

educational attainment in this data, which could severely bias the estimation results.

In this application, the reported outcome Y is whether an individual reports at-

tending a college which may be subject to misreporting. Instrument Z is whether an

individual grew up near a four-year college (college proximity). This instrument af-

fects people’s true decision of attending college, but may not affect their misreporting

behaviors. We also include two other covariates in the binary choice model: parents’

average education X1 and whether an individual is black X2. The following table

shows the summary statistics of all variables.

We adopt the semiparametric binary choice model with instrument Z to study

how individuals’ observed characteristics affect the likelihood of attending a college.8

8The interview-related information is only available in a “restricted-use” version of NLSY79, so
there is no instrument W for this application.
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Table 4: Summary Statistics

Y X1 X2 Z

min 0 0 0 0

max 1 18 1 1

mean 0.268 10.173 0.230 0.678

s.d. 0.443 2.786 0.421 0.467

In addition to accommodating flexible misreporting processes, our method is robust to

distributional assumptions. The full vector of covariate is X = [1;X1;X2;Z], and the

corresponding coefficient is denoted as β0 = [β0
0 , β

1
0 , β

2
0 , β

3
0 ]. For the semiparametric

binary choice model, the coefficient β0 can be only identified up to a constant. The

coefficient of instrument Z is normalized to one since people tend to be more likely

to attend a college when they live closer to a college. For comparison, we also display

the results of the HAS approach, which is described in Section 4.

Table 5: Application: Estimation Results

β̂0 β̂1 β̂2 β̂3

this paper [-1.667, -0.879] [0.030, 0.091] [-1, -0.333] 1

HAS -32.577 -23.368 -10.582 -27.823

Table 5 presents the estimation results for the coefficients in the binary choice

model. The method in this paper shows a positive sign of parents’ education and a

negative sign of being black for educational attainment. However, the HAS method

shows negative signs for all coefficients, which seems inconsistent with economic in-

tuition. Parents’ education and living closer to a college are likely to increase the

chance of attending a college instead of decreasing the chance. The results show that

misspecifications in misreporting processes or distributional assumptions may lead to

opposite signs of the coefficients.
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6 Extension: Two Instruments

Section 2.1.1 and 2.1.2 provide bounds for the true conditional probability p∗(x) when

there is only one instrument available. This section studies the joint identifying power

of the two instruments (Z,W ). The observed variables are (X,W, Y ) = (X̃, Z,W, Y )

when two instruments are available. We adjust previous assumptions in Section 2.1.1

and 2.1.2 slightly to accommodate the availability of the two instruments.

Assumption 9. (1) Exclusion: for any x̃ ∈ X̃ , z ∈ Z, w ∈ W, and y ∈ {0, 1},

Pr(Y ∗ = 1 | x,w) = Pr(Y ∗ = 1 | x) = p∗(x),

Pr(Y = 1− y | Y ∗ = y, x, w) = Pr(Y = 1− y | Y ∗ = y, x̃, w).

(2) Degree of misreporting: for any x̃ ∈ X̃ and w ∈ W,

Pr(Y = 0 | Y ∗ = 1, x̃, w) + Pr(Y = 0 | Y ∗ = 1, x̃, w) ≤ 1.

(3) Monotonicity & Relevance: for any x̃ ∈ X̃ , w1 > w2 ∈ W, and y ∈ {0, 1},

Pr(Y = 1− y | Y ∗ = y, x̃, w1) ≤ Pr(Y = 1− y | Y ∗ = y, x̃, w2),

and there exists k ∈ {0, 1} such that the above inequality is strict.

(4) Relevance: for any x̃ ∈ X̃ , there exists z1 6= z2 ∈ Z such that p∗(x̃, z1) 6= p∗(x̃, z2).

Assumption 9 summarizes all assumptions for the two instruments (Z,W ) in pre-

vious sections. Assumption (1) states exclusion restrictions for the two instruments,

which requires that instrument Z does not affect misreporting probabilities and in-

strument W does not affect the true probability. Assumption (2) requires the sum

of the two-sided misreporting probabilities to be smaller than one. Assumption (3)

adds one relevance restriction for instrument W so that W at least affects the mis-

reporting probability for one group Y ∗ = y strictly. Assumption (4) is the relevance

condition for instrument Z, but the direction of how the true probability is affected
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by instrument Z is not restricted so that instrument Z can either increase or decrease

the true probability. The relevance condition of instrument Z can guarantee that the

supremum and infimum of the reported probability over Z are bounded away from

one and zero respectively. Therefore, the boundary condition in previous sections is

no longer needed in this section.

Under the above assumptions, we can use joint variation in the two instruments to

derive bounds for misreporting probabilities and the true probability. The joint vari-

ation can bound misreporting probabilities through a new channel, thereby providing

more informative results than simply taking intersections over the bounds derived

using each instrument separately.

Let wm denote the maximum value of instrumentW . Next, we establish bounds for

the misreporting probabilities evaluated at wm by using the two instruments jointly.

Under the monotonicity condition of instrument W in Assumption 9 (iii), the misre-

porting probability at wm is the smallest misreporting probability. The bounds for

misreporting probabilities evaluated at other values of W can be established similarly,

which will lead to the same identification result for the true probability. Therefore,

we focus on the results for the smallest misreporting probabilities.

The next lemma derives bounds on misreporting probabilities evaluated at W =

wm.

Lemma 1. Under Assumption 9, the misreporting probability Pr(Y = 1 − y | Y ∗ =

y, x̃, wm) can be bounded as: [0, Uαy(x̃, wm)] for any x̃ ∈ X̃ and y ∈ {0, 1}, where

Uα1(x̃, wm) = 1− sup
z,w<wm

{
q1(x̃, wm, w)pW (x̃, z1, w)− pW (x̃, z1, wm)

q1(x̃, wm, w)− 1
, pW (x̃, z, wm)

}
,

Uα0(x̃, wm) = inf
z,w<wm

{
q1(x̃, wm, w)pW (x̃, z1, w)− pW (x̃, z1, wm)

q1(x̃, wm, w)− 1
, pW (x̃, z, wm)

}
,

q1(x̃, wm, w) =
pW (x̃, z1, wm)− pW (x̃, z2, wm)

pW (x̃, z1, w)− pW (x̃, z2, w)
.

Lemma 1 characterizes the lower and upper bound for the misreporting probabili-

ties evaluated at W = wm by using two instruments jointly. The lower bounds for the
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smallest misreporting probabilities are zero, since we cannot rule out the possibility

of no misreporting.

The upper bounds demonstrate the joint identifying power of the two instruments.

From the definition of Uαy(x̃, wm), it uses variation from both instruments (Z,W ).

The term pW (x̃, z, wm) shows the identifying power of instrument Z, and the other

term involving q1(x̃, wm, w) uses joint information of the two instruments, providing

more information compared to using only instrument W . The main idea is that

the joint variation in the two instruments imposes additional restrictions between

misreporting probabilities at different values of W , which can further bound the

misreporting probabilities.

Given bounds on misreporting probabilities, the next proposition characterizes

the identification result for the true probability p∗(x).

Proposition 6. Under Assumption 9, the true conditional choice probability p∗(x) is

bounded as p∗(x) = [L3(x), U3(x)] for any x ∈ X , where

L3(x) =
pW (x,wm)− Uα0(x̃, wm)

1− Uα0(x̃, wm)
, U3(x) =

pW (x,wm)

1− Uα1(x̃, wm)
.

And the above bounds are sharp when instrument W is binary.

Proposition 6 establishes bounds for the true probability by using two instruments

jointly, and these bounds have exhausted all possible information from assumptions

and observed data when instrument W is binary. From the definition of the bounds,

the lower bound L3(x) decreases with respect to the bound Uα0(x̃, wm) on misreport-

ing probabilities, and the upper bound U3(x) increases with respect to Uα1(x̃, wm).

Therefore, a smaller bound Uαy(x̃, wm) for misreporting probabilities would imply

tighter bounds for the true conditional probability. As discussed, the upper bound

Uαy(x̃, wm) on misreporting probabilities shown in Lemma 1 would be smaller than

the one by only using one instrument. Therefore, Proposition 6 derives more infor-

mative bounds for p∗(x) by using the two instruments jointly.
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7 Conclusion

This paper provides partial identification of various binary choice models with misre-

ported dependent variables, including parametric, semiparametric, and panel binary

choice models. We introduce two distinct approaches by exploiting the availability of

different instrumental variables, respectively. Moreover, our approach can accommo-

date additional restrictions on misreporting, such as one-sided misreporting, bounded

misreporting probabilities, and monotone misreporting probabilities.

Our approach allows for flexible misreporting processes in the sense that we do not

impose any parametric model for misreporting processes and allow for heterogeneous

misreporting probabilities. It would be interesting to explore how additional paramet-

ric structures on misreporting can tighten the bounds for the conditional expectation

of the true dependent variable. Furthermore, we focus on binary choice models in this

paper, while the approach for handling misreporting may be applied more broadly.

It still requires substantial future work to investigate how the method can be applied

in other models with potential misreporting, such as ordered and multinomial choice

models with misreported dependent variables.
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A Appendix

We first introduce the notation for conditional misreporting probabilities. Define the

conditional misreporting probability αy(x) for people with Y ∗ = y as follows: for

y ∈ {0, 1},

αy(x) = Pr(Y = 1− y | Y ∗ = y,X = x).

With a slight abuse of notation, we use the same function name αy when it is con-

ditional on different covariates to avoid the complexity of introducing more notation.

As such, the function αy is defined conditional on x̃ in Section 2.1.1, conditional on

(x,w) in Section 2.1.2, and conditional on (x̃, w) in Section 6.

A.1 Proof of Proposition 1

Proof. The covariate X is divided into two parts: X = (X̃, Z). Under the exclusion

restriction of instrument Z (Assumption 1), we know that the conditional misreport-

ing probability only depends on covariate x̃ so it is denoted as αy(x̃) for y ∈ {0, 1}.

The proof of Proposition 1 comprises two steps: the first step is to bound the

misreporting probabilities α0(x̃), α1(x̃) using variation in instrument Z. The second

step is to bound the true probability p∗(x).

Step 1: bound the misreporting probabilities αy(x̃). The reported probability

p(x) = Pr(Y = 1 | x) comes from two parts: people with Y ∗ = 1 and report the

truth, as well as people with Y ∗ = 0 and misreport. Then under Assumption 1, the
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reported probability p(x) can be expressed as follows:

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)].

By combining the common term p∗(x), the above equation can be written as

[1− α0(x̃)− α1(x̃)]p∗(x) = p(x)− α0(x̃).

Assumption 2 (degree of misreporting) implies that 1 − α0(x̃) − α1(x̃) ∈ [0, 1].

The fact that the true conditional probability satisfies p∗(x) ∈ [0, 1] can bound the

misreporting probability αy(x̃) as follows:

p∗(x) ≥ 0 ∀z =⇒ 0 ≤ α0(x̃) ≤ p(x),

p∗(x) ≤ 1 ∀z =⇒ 0 ≤ α1(x̃) ≤ 1− p(x).

Since the misreporting probability αy(x̃) does not depend on z, we can take the

smallest upper bound over z:

0 ≤ α0(x̃) ≤ inf
z∈Z

p(x̃, z) = pz(x̃),

0 ≤ α1(x̃) ≤ 1− sup
z∈Z

p(x̃, z) = 1− p̄z(x̃).

Step 2: bound the true probability p∗(x). Now we revisit the equation for the

reported probability p(x):

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)]. (3)

Given bounds on misreporting probabilities α0(x̃), α1(x̃) derived in the first step,

equation (3) leads to the following inequalities:

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)] ≥ p̄z(x̃)p∗(x),

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)] ≤ p∗(x) + pz(x̃)[1− p∗(x)].

Under Assumption 3 (boundary condition), we know that the infimum and supre-

mum of the reported probability p(x) is bounded away from one and zero respectively.
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Then the true probability p∗(x) can be bounded as follows:

p(x)− pz(x̃)

1− pz(x̃)
≤ p∗(x) ≤ p(x)

p̄z(x̃)
.

Now we need to prove the sharpness of the above bounds. It can be proved by

showing that the lower bound and upper bound can be achieved. The idea is to

show that given the lower bound and upper bound, we can construct misreporting

probabilities and the true probability which match the reported probability p(x) and

satisfy Assumptions 1-3.

We first look at the upper bound. The misreporting probability is constructed as

α1(x̃) = 1− p̄z(x̃), α0(x̃) = 0, and the true probability is constructed as p∗(x) = p(x)
p̄z(x̃)

.

It can be verified that this construction matches the reported probability p(x) and

satisfies assumptions. Similarly the lower bound can be achieved when α1(x̃) = 0,

α0(x̃) = pz(x̃), and p∗(x) =
p(x)−pz(x̃)

1−pz(x̃)
.

A.2 Proof of Proposition 2

Proof. In this part, the misreporting probability depends on the covariate (x,w) so

it is denoted as αy(x,w). The strategy is similar to the proof in Section A.1: we first

establish bounds for the misreporting probability αy(x,w) using instrument W and

then derive bounds for the true probability p∗(x).

Under Assumption 4 (exclusion) for instrument W , the reported probability

pW (x,w) can be expressed as

pW (x,w) = [1− α1(x,w)]p∗(x) + α0(x,w)[1− p∗(x)].

Given the fact that the true probability satisfies p∗(x) ∈ [0, 1] and the sum of two-

sided misreporting probabilities is smaller than one (Assumption 6), the misreporting
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probabilities are bounded as

p∗(x) ≥ 0 =⇒ 0 ≤ α0(x,w) ≤ pW (x,w),

p∗(x) ≤ 1 =⇒ 0 ≤ α1(x,w) ≤ 1− pW (x,w).

(4)

However the misreporting probability αy(x,w) also depends on instrument W so

that the above results are not informative for the true probability. Next we use

the monotonicity assumption of instrument W to further bound the misreporting

probabilities. Under Assumption 5 (monotonicity), the following holds for any w̃ <

w ∈ W :

α0(x,w) ≤ α0(x, w̃) ≤ pW (x, w̃),

α1(x,w) ≤ α1(x, w̃) ≤ 1− pW (x, w̃).

(5)

Then the misreporting probability αy(w) at each w can be further bounded by

taking infimum over all upper bounds of misreporting probabilities evaluated at w̃ <

w:

0 ≤ α0(x,w) ≤ inf
w̃≤w

pW (x, w̃) = pw(x,w),

0 ≤ α1(x,w) ≤ 1− sup
w̃≤w

pW (x, w̃) = 1− p̄w(x,w).

Now we are ready to derive bounds on the true probability by the reported prob-

ability pW (x,w). Given bounds on the misreporting probability αy(x,w), it has the

following implication for each w:

pW (x,w) = [1− α1(x,w)]p∗(x) + α0(x,w)[1− p∗(x)] ≥ p̄w(x,w)p∗(x),

pW (x,w) = [1− α1(x,w)]p∗(x) + α0(x,w)[1− p∗(x)] ≤ p∗(x) + pw(x,w)[1− p∗(x)].

By Assumption 6 (boundary condition), the reported probability is bounded away

from zero and one. Then the true probability p∗(x) can be bounded as follows:

pW (x,w)− pw(x,w)

1− pw(x,w)
≤ p∗(x) ≤ pW (x,w)

p̄w(x,w)
.

Since the above bounds hold for any w and the true probability does not depend
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on w, we can take intersections over all possible values of w:

sup
w∈W

{
pW (x,w)− pw(x,w)

1− pw(x,w)

}
≤ p∗(x) ≤ inf

w∈W

{
pW (x,w)

p̄w(x,w)

}
.

In the end, we need to show that the above bounds are sharp when instrument

W ∈ {w1, w2} only takes two values with w1 > w2. When instrument W only takes

two values, the upper bound becomes p∗(x) = min
{
pW (x,w1)
p̄w(x,w1)

, 1
}

= pW (x,w1)
p̄w(x,w1)

. This

bound can be achieved when the misreporting probability satisfies α1(x,w1) = 1 −

p̄w(x,w1), α0(x,w1) = 0 as well as α1(x,w2) = 1 − pW (x,w2), α0(x,w2) = pW (x,w2).

It can be verified that this construction satisfies Assumptions 5-6 and matches the

reported probability pW (x,w).

The lower bound for the true probability is p∗(x) = max
{
pW (x,w1)−pw(x,w1)

1−pw(x,w1)
, 0
}

=

pW (x,w1)−pw(x,w1)

1−pw(x,w1)
. It can be achieved when α1(x,w1) = 0, α0(x,w1) = pw(x,w1) and

α1(x,w2) = 1−α0(x,w2), α0(x,w2) = pW (x,w2). This construction satisfies Assump-

tions 5-6 and matches the reported probability.

A.3 Proof of Proposition 3

Proof. We focus on one type of one-sided misreporting where α0(x̃) = 0 or α0(x̃, w) =

0, and the same analysis applies to the other case.

When instrument Z is available, the upper bound U1(x) remains the same and

it is sharp. It can be achieved when α1(x̃) = 1 − p̄z(x̃), α0(x̃) = 0, and the true

probability is p∗(x) = p(x)
p̄z(x̃)

= U1(x). The lower bound can be established as follows:

p(x) = [1− α1(x̃)]p∗(x) ≤ p∗(x).

Now we show that the lower bound is sharp. We can construct misreporting

probabilities as α1(x̃) = 0, α0(x̃) = 0 and the true probability as p∗(x) = p(x) such

that they match with the reported probability p(x).
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When instrument W is available, one-sided misreporting assumption implies the

monotonicity of pW (x,w) in w under the monotonicity assumption of W in Assump-

tion 5, and the upper bound should equal one U2(x) = 1. This can be achieved when

1− α1(x,w) = pW (x,w) and p∗(x) = 1.

For the lower bound, the following restriction holds under the exclusion restriction:

pW (x,w) = [1− α1(x,w)]p∗(x) ≤ p∗(x).

Then the true probability can be bounded by all values of W :

p∗(x) ≥ sup
w
pW (x,w).

The lower bound can be achieved when 1 − α1(x,w) = p(x,w)
supw pW (x,w)

and p∗(x) =

supw pW (x,w), which satisfies all assumptions and matches with the reported proba-

bility.

A.4 Proof of Propositions 4 and 5

Proof. The proofs of Propositions 4 and 5 are similar to Appendix A.1-A.2. We focus

on the scenario where instrument Z is available, and the analysis for instrument W

is omitted since the idea is the same.

We first study Proposition 4 where misreporting probabilities are bounded. As

shown in A.1, under Assumptions 1-3, the misreporting probability αy(x̃) can be

bounded below:

α0(x̃) ∈ [0, pz(x̃)] α1(x̃) ∈ [0, 1− p̄z(x̃)].

Combining Assumption 7, we can tighten the bounds for αy(x̃):

α0(x̃) ∈ [0,min{pz(x̃), ᾱ0}] α1(x̃) ∈ [0, 1−max{p̄z(x̃), 1− ᾱ1}].
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Recall that the reported probability p(x) is given as

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)],

yielding the following inequalities:

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)] ≥ max{p̄z(x̃), 1− ᾱ1}p∗(x),

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)] ≤ p∗(x) + min{pz(x̃), ᾱ0}[1− p∗(x)].

Therefore, the true choice probability p∗(x) can be bounded as

p(x)−min
{
p(x̃), ᾱ0

}
1−min

{
p(x̃), ᾱ0

} ≤ p∗(x) ≤ p(x)

max {p̄(x̃), 1− ᾱ1}
.

In Proposition 5 with monotone misreporting probabilities α0(x̃) ≤ α1(x̃), the

misreporting probabilities can be further bounded as

α0(x̃) ∈ [0,min{pz(x̃), 1− p̄z(x̃)}] α1(x̃) ∈ [0, 1− p̄z(x̃)].

Under similar arguments, we have

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)] ≥ p̄z(x̃)p∗(x),

p(x) = [1− α1(x̃)]p∗(x) + α0(x̃)[1− p∗(x)] ≤ p∗(x) + min{pz(x̃), 1− p̄z(x̃)}[1− p∗(x)].

Therefore, misreporting probabilities can be bounded as

p(x)−min
{
pz(x̃), 1− p̄z(x̃)

}
1−min

{
pz(x̃), 1− p̄z(x̃)

} ≤ p∗(x) ≤ p(x)

p̄(x̃)
.

A.5 Proof of Lemma 1

Proof. In this part, the misreporting probability αy(x̃, w) depends on (x̃, w). We

suppress the covariate X̃ in this proof to simplify notation. Under the exclusion

restrictions imposed on the two instruments in Assumption 9, the reported probability
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pW (z, w) can be expressed as follows:

pW (z, w) = [1− α1(w)]p∗(z) + α0(w)[1− p∗(z)]. (6)

Under Assumption 9, instrument Z only affects the true probability p∗(z) and in-

strument W only affects the misreporting probabilities αy(w). We first derive bounds

on misreporting probabilities αy(w) and then establish bounds for the true probability

based on equation (6).

We first look at identification for the misreporting probabilities αy(w). Since the

true conditional probability satisfies p∗(z) ∈ [0, 1] for any z, we can bound αy(w)

following similar arguments to the proofs in Section A.1 and A.2:

α0(w) ∈ [0, inf
z∈Z

pW (z, w)], α1(w) ∈ [0, 1− sup
z∈Z

pW (z, w)]. (7)

Next, we use joint variation in the two instruments to build relationships between

misreporting probabilities evaluated at different values of W . This relationship can

further bound the misreporting probabilities. We fix instrument Z = z and look at

the reported probability evaluated at two different values w1 6= w2 ∈ W :

pW (z, w1) = [1− α1(w1)]p∗(z) + α0(w1)[1− p∗(z)],

pW (z, w2) = [1− α1(w2)]p∗(z) + α0(w2)[1− p∗(z)].

From condition (7), we know that 1 − α1(w) − α0(w) ≥ sup
z∈Z

pW (z, w) −

inf
z∈Z

pW (z, w) > 0 by the relevance condition of instrument Z. The above two equa-

tions both contain the common term p∗(z), and canceling out the same term p∗(z)

has the following implication:

pW (z, w1) =
1− α1(w1)− α0(w1)

1− α1(w2)− α0(w2)
[pW (z, w2)− α0(w2)] + α0(w1).

Let A1(w1, w2) = 1−α1(w1)−α0(w1)
1−α1(w2)−α0(w2)

and A0(w1, w2) = α0(w2)A1(w1, w2) − α0(w1).
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Then the above equation can be rewritten as follows for z ∈ {z1, z2}:

pW (z1, w1) = A1(w1, w2)pW (z1, w2)− A0(w1, w2),

pW (z2, w1) = A1(w1, w2)pW (z2, w2)− A0(w1, w2).

The two equations can jointly identify A1(w1, w2) and A0(w1, w2) as long as the

equations are not collinear. By the relevance condition of instrument Z, we know that

pW (z1, w)−pW (z2, w) = [1−α1(w)−α0(w)][p∗(z1)−p∗(z2)] 6= 0 so the two equations

are not collinear. Then A1(w1, w2) and A0(w1, w2) can be identified as follows:

A1(w1, w2) =
pW (z1, w1)− pW (z2, w1)

pW (z1, w2)− pW (z2, w2)
≡ q1(w1, w2),

A0(w1, w2) = q1(w1, w2)pW (z, w2)− pW (z, w1) ≡ q0(w1, w2) ∀z.

According to the definition of A1(w1, w2) and A0(w1, w2), they build relationships

between misreporting probabilities and this relationship can be used to further bound

misreporting probabilities. From the definition of A1(w1, w2) and A0(w1, w2), the

following holds for αy(w):

1− α1(w1) = [1− α1(w2)]q1(w1, w2)− q0(w1, w2),

α0(w1) = α0(w2)q1(w1, w2)− q0(w1, w2).

(8)

By the monotonicity condition of instrument W in Assumption 9 and bounds

on misreporting probabilities in condition (7), the following condition summarizes

restrictions on misreporting probabilities:

1 ≥ 1− α1(w1) ≥ 1− α1(w2), 0 ≤ α0(w1) ≤ α0(w2),

1− α1(w) ≥ sup
z∈Z

pW (z, w), α0(w) ≤ inf
z∈Z

pW (z, w).
(9)

Given the above restrictions on αy(w) and equation (8), we can derive bounds

on misreporting probabilities αy(w1). In order to derive explicit bounds on αy(w1),

we also need to discuss the value q1(w1, w2) and q0(w1, w2). By the monotonicity
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condition of instrument W , the following holds:

q1(w1, w2) =
1− α1(w1)− α0(w1)

1− α1(w2)− α0(w2)
> 1,

q0(w1, w2) = α0(w2)q1(w1, w2)− α0(w1) ≥ α0(w1)[q1(w1, w2)− 1] ≥ 0,

q1(w1, w2)− q0(w1, w2)− 1 = q1(w1, w2)− α1(w1)− [1− α1(w2)]q1(w1, w2)

= α1(w2)q1(w1, w2)− α1(w1) ≥ 0.

Then conditions (8) together with the restrictions (9) leads to bounds for αy(w1)

for any w1, w2:

max

{
q0(w1, w2)

q1(w1, w2)− 1
, sup
z∈Z

pW (z, w1)

}
≤ 1− α1(w1) ≤ 1,

0 ≤ α0(w1) ≤ min

{
q0(w1, w2)

q1(w1, w2)− 1
, inf
z∈Z

pW (z, w1)

}
.

The above bounds hold for any w2 < w1 and any z. Therefore we can derive

bounds for αy(wm) by taking intersections over bounds derived from all possible

values of z, w < wm which leads to:

0 ≤ α1(wm) ≤ 1− sup
z∈Z,w<wm∈W

{
q0(wm, w)

q1(wm, w)− 1
, pW (z, wm)

}
= Uα1(wm),

0 ≤ α0(wm) ≤ inf
z∈Z,w<wm∈W

{
q0(wm, w)

q1(wm, w)− 1
, pW (z, wm)

}
= Uα0(wm).

A.6 Proof of Proposition 6

Proof. We look at the equation for the reported probability conditional on (x,wm):

pW (x,wm) = [1− α1(x̃, wm)]p∗(x) + α0(x̃, wm)[1− p∗(x)]. (10)

Given bounds on misreporting probabilities derived in Lemma 1, it implies the

following conditions:

pW (x,wm) ≤ p∗(x) + Uα0(x̃, wm)[1− p∗(x)],

pW (x,wm) ≥ [1− Uα1(x̃, wm)]p∗(x).
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First we can show that the upper bounds for Uα1(x̃, wm) and Uα0(x̃, wm) are

strictly smaller than one. It can be shown by proving that supz p(x̃, z, w) > 0 and

infz pW (x̃, z, w) < 1 for any (x̃, w).

We prove it by contradiction. If the supremum of pW (x̃, z, w) over z is zero which

implies that pW (x̃, z, w) = 0 for all z. However we know that there exists z1, z2 such

that pW (x̃, z1, w)−pW (x̃, z2, w) = [1−α1(x̃, w)−α0(x̃, w)][p∗(x̃, z1)−p∗(x̃, z2)] 6= 0 by

the relevance condition of instrument Z and the degree of misreporting assumptions in

Assumption 9. Therefore pW (x̃, z, w) cannot be zero for all z and the supremum of it

over z is strictly larger than zero. Similarly we can conclude that infz pW (x̃, z, w) < 1

and the upper bounds Uαy(x̃, wm) are strictly smaller than one.

Then the true probability p∗(x) can be bounded as follows:

pW (x,wm)− Uα0(x̃, wm)

1− Uα0(x̃, wm)
≤ p∗(x) ≤ pW (x,wm)

1− Uα1(x̃, wm)
.

Now we need to show that the above bounds are sharp when instrument W only

takes two values: W ∈ {w1, w2} with w1 > w2 so that wm = w1. We prove it by

constructing misreporting probabilities and the true probability such that they match

with the reported probability and also satisfy Assumption 9.

We first show that the upper bound p∗(x) = pW (x,w1)
1−Uα1 (x̃,w1)

can be achieved. The

misreporting probabilities αy(x̃, w) are constructed as: α1(x̃, w1) = Uα1(x̃, w1),

α0(x̃, w1) = 0, α1(x̃, w2) = 1 − 1−Uα1 (x̃,w1)+q0(x̃,w1,w2)

q1(x̃,w1,w2)
, α0(x̃, w2) = q0(x̃,w1,w2)

q1(x̃,w1,w2)
. It

can be verified that they match with the reported probability pW (x,w) for any

x,w ∈ {w1, w2} under some algebra.

Next we verrity that misreporting probabilities we construct satisfy Assumption

9 which assumes monotonicity and the degree of misreporting. Given the upper

bound Uα1(x̃, w1) is strictly smaller than one, then the misreporting probabilities

constructed above satisfy the degree of misreporting: α0(x̃, w) +α1(x̃, w) < 1 for any

x̃, w ∈ {w1, w2}. The monotonicity condition for α0(x̃, w) is satisfied since α0(x̃, w2) ≥
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0 = α0(x̃, w1), so we only need to show the monotonicity condition for α1(x̃, w). We

look at the difference of the two misreporting probabilities multiplied by q1(x̃, w1, w):

q1(x̃, w1, w2)[α1(x̃, w1)− α1(x̃, w2)]

=− [1− Uα1(x̃, w1)][q1(x̃, w1, w2)− 1] + q0(x̃, w1, w2)

≤− q0(x̃, w1, w2)

q1(x̃, w1, w2)− 1
[q1(x̃, w1, w2)− 1] + q0(x̃, w1, w2) ≤ 0.

Therefore the monotonicity condition is also satisfied.

Lastly, we need to prove that the lower bound p∗(x) =
pW (x,w1)−Uα0 (x̃,w1)

1−Uα0 (x̃,w1)
can be ob-

tained. The misreporting probabilities are constructed as: α1(x̃, w1) = 0, α0(x̃, w1) =

Uα0(x̃, w1), α1(x̃, w2) = 1 − 1+q0(x̃,w1,w2)
q1(x̃,w1,w2)

, and α0(x̃, w2) =
Uα0 (x̃,w1)+q0(x̃,w1,w2)

q1(x̃,w1,w2)
. Simi-

larly it can be shown that they satisfy Assumption 9 and match with the reported

probability pW (x,w) for any (x,w).
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